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ABSTRACT

In order to solve FD-TD electromagnetic radiation and scattering problems in free
space, the computational grid should be truncated at some finite distance to simulate the
solution for an infinitely large grid. One way to emulate an infinite grid is to absorb
outgoing waves incident onto the grid boundary such that there is no reflection back mto
the grid. Waves incident to the boundary must "exit" the grid boundary without affectng
the solution within the grid. Based on this idea, this thesis develops Transparent Grid
Termination (TGT) in 1-D, 2-D and 3-D as an absorbing boundary. TGT performance is
compared with a very large grid, for which reflections do not return to the computational

domain within the observation time window.
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I. INTRODUCTION

A. OVERVIEW

The analysis of electromagnetic problems in the time domain has become more
common in recent decades. In this approach, the differential or integral equations for the
particular problem under consideration are typically solved numerically using a short
time-duration waveform as excitation. By far the most common of these techniques is the
so-called finite difference time-ciamain (FD-TD) method.

In the FD-TD method, the problem is spatially discretized (“sampled") using a spatial
step AL usually in a Cartesian coordinate system and temporally “sampled” using a time
step At. The differential operators in the differential form of Maxwell's equations are
approximated by finite differences or, equivalently, integrals in the integral form of
Maxwell's equations are approximated by finite sums. In this research, a pulse waveform is
excited at the center of the discretization grid, and the fields at the grid nodes are
computed at discrete time steps. The field at a particular grid node at time t can be
determined from the fields of this and adjacent nodes calculated for the previous time step
t - At. The electric and magnetic fields obtained via the FD-TD method are the result of a
"marching in time" process whose accuracy is affected by the approximations introduced
at each time step. These include the grid size, time step, length of time observation,

excitation waveform, and so forth.




There are several advantages to the FD-TD method. First, it is relatively simple to
implement for complex objects because of spatial discretization. Inhomogeneous media is
handled by assigning varying electric and magnetic properties (€, 1, and ©) to individual
cells. Although the FD-TD electric and magnetic field "update” equations appear complex,
they contain only addition, substraction, and multiplication. Furthermore, computer
memory requirements are usually less demanding than those for the method of moments
(MOM).

An important consideration in the FD-TD method is how to terminate the spatial
discretization grid. The FD-TD equation derived in the following section will describe
how waves propagate along an infinite grid. However, in all practical applications the grid
will have to be restricted to a finite number of nodes. Therefore, a method for grid
“termination" is required. The "standard" FD-TD update equations are valid for all nodes
except those on the grid edges, because the grid edge nodes have fewer neighbors than the
non-edge (internal) nodes. Therefore, edge nodes with a different number of neighbors
have update equations different from the equations derived for the intemal grid nodes. The
question is how can one determine the equations for the edge nodes? One approach is to
try to absorb a wave incident from inside the grid onto the boundary such that there is no
reflection back into the grid. This is referred to as an absorbing boundary condition
(ABC) [Ref 2]. However, the grid itself is not ideal, that is a wave does not pass through
the grid without some reflection even for those nodes that are not at grid's edges (this is

the consequence of spatial and temporal field sampling). Requiring that there is no




reflection off the grid edges is thus too restrictive, because there is some reflection at each
and every node within the grid. We thus propose a different approach that we refer to as
the Transparent Grid Termination (TGT). We start by making only one demand on the
grid termination condition: that, ideally, the solution within the grid should be the same
solution that one would obtain with an infinitely large grid, or in other words, that
reflections off a grid edge node are the same as the reflections off any other node inside
the grid. Note that if the grid were mfinitely large, the grid edges would be at infinity and
the equations for the grid edge nodes would be irrelevant, since the excited or scattered
field would take an infinitely long time to reach the grid edges, and thus the edge
equations would never really be needed. The TGT requirement is conceptually very simple
and fairly straightforward to implement. We will use the multiport concept (used in
analysis of linear systems) to introduce the TGT concept, and details will be shown in the

following sections.
B. OBJECTIVE

The performance of the TGT in 1-D, 2-D, and 3-D can be assessed based on the
residual reflection off the TGT boundary. In this thesis the total power of the
electromagnetic field, excited by a unit amplitude delta pulse in the grid center, will be
observed as a function of time. If the grid were ideal, the energy of the field at any node
will be zero for all time after the pulse has passed that node. The total energy within an

infinite ideal grid would be constant however. The total energy within a finite ideal grid




with ideal grid termination condition will be constant until the pulse has reached the grid
edge and will then quickly go to zero as the pulse leaves the grid. However, because the
grid is not ideal, there are some residual values at any grid node, even after the initial pulse
has passed that node. Therefore, the energy within a non-ideal grid will not be constant
but will fluctuate about its value for the ideal grid. These fluctuations generally decrease
with time but they would exist even if the grid were infinite. If the grid is terminated, the
residual energy within the grid will increase because of additional reflections off the grid
edges. The global effect of the grid termination can thus be assessed by comparing the
total grid powers as functions of time for the following two cases: an "mfinite” grid, and a
finite size grid with TGT or ABC. Note that the "infinite” grid is simulated by using a
large grid and finishing the observations before the pulse that started at the grid's center
has reached any of the grid edge nodes. Note that if the TGT or ABC were ideal, there
would be no increase in energy within the grid after the pulse has reached the grid edges.
If the TGT is not ideal, the relative change of the energy within the grid (compared to the
case of an "infinite" grid) is a measure of TGT "quality": the smaller the change, the better
the TGT would be. We will thus compare the total energies within the TGT boundary for
a large grid with Dirichlet boundary condition (any boundary condition is appropriate for
this "infinite" grid simulation because the reflections off the edges of the large grid do not
reach the smaller grid boundary within the observation time-window) and the smaller grid
with the TGT boundary. Once again, the large grid must provide sufficient distance

between the TGT and Dirichlet boundaries such that the reflections of the Dirichlet




boundary do not reach the TGT boundary within the observation interval. The measure of
residual reflection off the TGT boundary will be the difference of the energies within the
TGT boundary for the "infinite" grid and the TGT. It is convenient to normalize this
difference to the energy within the TGT boundary for the "infinite" grid, and express the
resulting ratio in dB. The objective of this thesis is thus to determine the quality

(measured in dB as described above) of the Transparent Grid Termination (TGT) .







I1. ANALYSIS OF TGT FOR 1-D ¥D-TD

A. FD-TD FORMULATION IN 1-D

1. FD-TD Equations in 1-D

The incident and the scattered electromagnetic fields and the media parameters in
1-D problems can vary with one spatial coordinate only. We will denote this coordinate
as z. The fields will also be functions of time t. The media will be assumed stationary,
that is, the media parameters are not functions of time t. 1-D electromagnetic fields must

- -
be Transverse Electro-Magnetic (TEM) fields, that is the field components E and H

must be in a plane transverse to the direction of field propagation [Ref. 5]. Since we have
denoted the direction of propagation as z, the fields can be denoted as transverse-to-z or
TEM,. The electric and magnetic vectors of a TEM field must be perpendicular to each
other. The E and H field vectors and the direction of propagation form a triplet of

orthogonal vectors, as shown below.




Figure 2.1. TEM Field Components.
The axes were selected such that the electric field vector is x-directed and the

magnetic field vector is y-directed.
) =Es)X 2.1
He)=Ha)y @.2)
The electric and magnetic fields satisfy Maxwell's curl equations which express the
electric and magnetic field coupling and can be written in the integral or the differential
form. We will use the integral forms because they are applicable to finite (line, surface, or
volume) domains whereas the differential forms are applicable to infinitesimally small
domains (points). Shown below are the integral forms of Maxwell's curl equations for 2
TEM, field.
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The second equation does not have the source current term since it has been

assumed that there were no source currents in the domain of interest. The contours of
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integration for the electric and the magnetic field contour integrals are, in general, different
and a;e thus labeled C; for an electric field circulation and C; for a magnetic field
circulation. (A closed path line integral will be referred to as the circulation.) Similarly, the
surfaces associated with the contours are labeled S; for the magnetic field surface mtegral
and S, for the electric field surface integral. Surface integrals on the right-hand side will be
referred to as fluxes. The first step in discretizing the curl equations is to select the
contours for the electric and magnetic field circulation. Since the essence of Maxwell's
curl equations is the coupling of the electric and magnetic fields, the contours will be

selected such that this coupling is achieved in a straightforward manner, as shown below.

. ¥ . E >z
/ L g
y Dy

Figure 2.2. Contours for Electric and Magnetic Field Circulation and Fluxes.
The electric field contours C;, and the magnetic field contours C, are square (Al by
Al) contours, but in orthogonal planes. The C; contours are in the xz-plane, while the Cy
contours are in the yz-plane. The contours can be compared to links of a chain, evoking
the idea of electric and magnetic field linkage. This selection of such contours leads to the

so-called dual discretization grid, also referred to as the Yee lattice [Ref. 1].




2. Derivation of Magnetic Field Update Equation

The discrete equivalent of the electric field circulation will be determined next. A

contour Cy is shown below.

A
E(z-812,1) | H(zp) E@zHAU2,1)

Figure 2.3. A Contour for Electric Field Circulation and Magnetic Flux Calculations.

The center of the surface S, is assumed to have the coordinates (x, z). A local
coordinate system (§,() can be established, with the origin at the center of the contour.
Any point (X,z') within or on the contour C; (or, equivalently, any point on the surface

S;) can be specified by its local coordinates & and

x'=x+& z/=z+( where -7 §<+— and —A << -{%—l

The local coordinates will be used in evaluation of the line and surface integrals
that constitute the integral forms of Maxwell's equations. The electric field E, is not a
function of the x-coordinate and the electric field is zero along the top and the bottom
sides of the contour because there can be no z-directed field components of a TEM, field.
The circulation of the electric field around the electric field contour C; , assuming
counter-clockwise reference direction such that the normal to the surface S; is m the

._)
direction of the magnetic field H(z, ?), can be evaluated exactly

10




—_— Al o
§, EG+e )T edlp= [ B+ 407 o7 - [F Ble- 50X o X (25)
2 7 7

S >
§CE Ez+4 0% edls =[ B+ L,0-Ec- 0] Al (2.6)
The rate of change of magnetic flux through the surface S; (within the contour C;)

can, on the other hand, be evaluated only approximately, since the exact way that the

magnetic flux density

B(z, 1) = n@HE, 1) 2.7

varies with the z-coordinate is not known a priori. Note that there is no variation of the
magnetic flux density with the x-coordinate. We will next evaluate the magnetic flux
approximately
- 7 ¥4 > -
[l we+0mG+607 edsr=[7; [ e+ QB,E+L0Y o YaEd,  (28)
2 2
The surface integral reduces to a line integral, since the integrand is not a function
of the local x-coordinate &
- 2 +4
[l ve+OmG+00Y o dsp =M1 uGe+OHGE+E DA (29)
2
There are infinitely many ways to model the variation of the magnetic flux density
with the local z-coordinate £ within the contour. Since the magnetic flux density B(z+C,t)
is the product of the permeability p(z+¢) and the magnetic field H(z+C,t) we first need to
assume a certain variation of the magnetic field with { such that the integral can be
evaluated over S;. The simplest model assumes that the contour width Al is small enough
such that the magnetic field H(z+{,t) within the contour may be assumed constant and
equal to the value at the contour's center H(zt). This is equivalent to using a piece-wise

constant ("pulse" expansion) approximation of the actual magnetic field variation with the

11




z-coordinate. The above assumption allows that the magnetic field, although constant
within a contour, can change from one contour to an other. This yields an approximate
expression for the for the magnetic flux
5, e+OH,E+C0Y o dss ~ AL Hy(z.)- |72 we+0dg (2.10)
2
The integral of the permeability p(z+;) can be re-written in the following manner
" "
[ u(Z+C)dC=Al'[Zl—l [ u(z+¢)dc] @.11)
2 2
The term in the brackets is recognized as the average permeability p,, within the contour
C.
1 [+
hae@) = 3 [ & e +OL 2.12)
2
The approximate expression for the magnetic flux through S; can now be written using the

average permeability as
- = )
I, wE+OHE+E03 o dss = (8D wag@HyG. D (2.13)

Again, this approximate expression resulted from the piece-wise constant
approximation of the magnetic field with respect to the z-coordinate. The main advantage
of the piece-wise constant expansion employed above is its simplicity. Better accuracy can
be achieved by using more involved models for the field variation with z but at the
expense of increasing the complexity and computational time. The first curl equation of

Maxwell can now be replaced by an approximate equation
[Ese+2,0-Ez-4.9]-Al= —g,; {[Mavg@H, (2, D)(AD? } (2.14)
which can be simplified (because of media stationarity) to
Efz+2)-E(z- 2 i) = —%{Hy(z, 0} - Al g 2) (2.15)

This equation can also be re-written as

12




%{Hy(z, 0} ~ m[Ex(z+%'—, H-Ez-2,9)] (2.16)

The time derivative operator in the above equation is typically replaced by the

finite difference approximation [Ref 1]. However, an alternate approach is presented here,

such that the approximation of the field temporal variation is shown to be analogous to the

approximations already introduced for the field spatial variation. The above equation is

integrated with respect to time to get an approximate equation for the magnetic field at the
present time t

Hyz, 1) ~ —~—;(—)U B+ 4,0 || E— 4,0 | (2.17)

A similar integral equation can be written for the magnetic field at the same spatial

location but at an earlier time t-At

Hyz, - At)~A—lE1:~(Z—)[f Ec+&nd-[ " Ee-Lod]|  (218)

Subtracting the two equations we get

Hy(z, )~ Hy(e, - A) = — UtmE,(z+2,T)d‘c [ Ee-4 0] (219)

(Z)

which can be also written as an update" equation (assuming that the previous field value

at the same location is known)

Hy(z,) % Hy(z, 1~ A - 5 (], Be+Lom-]  EG-4 W)t | (2.20)

1
[ Wavg(2)
The integrals on the right-hand side can not be evaluated exactly, because the
exact temporal variation of the electric fields within the At interval prior to t is generally
not known, just like the spatial integral for the magnetic flux could not have been

evaluated exactly because the exact variation of the magnetic field within the contour was

not known. However, the integrals can be evaluated approximately by assuming a certain




variation of the electric field with the temporal variable 1. The simplest approach,
consistent with the assumptions made for the field spatial variation, would be to assume
that the interval At is small enough such that the electric field can be assumed

approximately constant within At and equal to the value at the center of the time interval

(t—At, t)
EC+2,0)~Ez+%,t-2) for t-Ar<t<t (2.21)
E(z———r)~E(z——t——) for t—-At<t<t (2.22)

The above represents a piece-wise constant approximation of the electric field variation
with respect to the temporal variable t. The approximate expression for the magnetic field

at location z and the time t now becomes

At
By, 1) ~ Hy(e,1= A = 3= s [Ec+& - -E-2 -] (223
avg

The above equation can be written in a somewhat different form, using the identity

€
_SF 1 1 L L 1_yllovral (29)

1_11
BT Holr T B [Ho JfHo T JHogo [Ho Kr Zo M
€o

where the free space velocity of propagation is denoted v,, the intrinsic impedance of free
space is denoted Z, (Zo = 377C2), and p, denotes relative permitivity. Introducing the grid
"propagation” velocity

Veria = 31 (2.25)

we can write the approximate "update"” equation for the magnetic field as

[E:c+&, -8 -E -2 -] (2.26)

Hy(z,) ~ Hy(z, t — Af) — Yov wrre Wg()

The equation simplifies for the case of non-magnetic media (u=1)
H,(z, 0 ~ H,(z,t - Af) - Yo | Bz +4, - -Exz- 5,1~ o] @2

14




The last two equations show that the magnetic field H and the electric field E are
evaluated at points shifted spatially by AV/2, and at instants separated in time by At/2. The
relationship between spatial and temporal "samples” of the electric and the magnetic fields
is thus the same the samples are shifted with respect to each other by one-half of the
sampling interval. This is the essence of the Yee lattice and applies to "sampling” of 2-D
and 3-D fields as well. Dual approximate equations for the electric field "updates” can

now be derived using the same procedure shown for the magnetic field update equations.

3. Derivation of Electric Field Update Equation

We start with the Maxwell's curl equation for the circulation of the magnetic field
§CH HyG)x e dly= 5{ ] 5, SOEG DX o dsH} +f 5, C@Ez )Y odsy  (228)
The discrete equivalent of the magnetic field circulation will be determined first,

using the contour shown below.

Ca

HzA 120 Bz e
/ % & Hed2,p ’

Figure 2.4. A Contour for Magnetic Field Circulation and Electric Flux Calculations.
A local coordinate system (\, ) can be established, with the origin at the center of

the contour. Any point (y',z") within or on the contour C, (or, equivalently, any pomt on

the surface S;,) can be specified by its local coordinates

y' =y+vy z/=z+ where —%Swﬁ-&—AZ—l and —%—ISCS-}AZI

15




The circulation of the magnetic field around C, , assuming counter-clockwise
reference direction such that the normal to the surface S, is in the direction of the electric

_)
field E (z,9), is therefore given exactly by the following simple expression

N > .o [+ - -
§. BG+L0Y edln=[1g Hye-5.07 odyy - [ LB +5.07 edvy (229)
2 2

§CH Hz+507 » iy - [Hyc-4,0-H+40] Al (2.30)

The rate of change of the electric flux through the surface S;; can only be evaluated

approximately, since the exact way that the electric flux density
D(z,H) =e(2)H(z, 1) (2.31)

varies in the z-direction is not known a priori. First we evaluate the flux integrals

] 5, ECHOEG+E, HX dog = | ﬁ | fg' sC+DE+L )% o Xdydl,  (2.32)

] 5, OC+OEG+C, N7 e dop = jfz ) *’Z S +OE+C DX » Xdydl, (2.33)

Since the integrands are not functions of the local y-coordinate y the surface integrals

simplify to line integrals
Hs,, e+ OEz+E DX o oy = Al ) j £(z +O)Ex(z + 8, dC (2.34)
I, oC+OE+E )% o dogy = AL [ 72 6z + OBz + 5, D (2.35)

Next, we assume that the contour width Al is small enough such that the electric
field E(z+(,t) within the contour may be assumed constant and equal to the value at the
contour's center E(zt). This assumption yields approximate expressions for the for the

flux integrals

] o SCHOEGE+E, HxX e dog = Al -Eolz, 1) ri ez +0)dC (2.36)

16




-> 2 +4 :
[ly, oG+0BE+L0F o dsy=A1-Euz0)- [ o+ O 2.37)
2
or, using the average permitivity and conductivity

) o EGHOEL+C, )X e oy = (AD? - Eag(2) - Ex(z, §) (2.38)

I, oG+OBG+C0R o dsn= (M) -Cams@) - Exe, (2.39)
The second curl equation of Maxwell can now be replaced by an approximate equation
[H-2,0-H,c+£,0] Al~ %{ [Eag(@)Ex(z, DJ(AD } + (A - G g(2) - Ex(z,8) (2.40)
which can be simplified (because of media stationarity) to
Hy~ 8,0~ HyG+ 2,1 = eag@) - Al S{E5, 0} +Al-Cag(@) - Ex(z1) (241)

The approximate equation can be re-written as

2B = gl S0P +£.0]- 50 B 42)

The above equation is integrated with respect to time to get an approximate equation for

the electric field at the present time t

E.z, 0~ Z--l—[ [ B~ L[ B+ 4 d]- Cang 2) [} Bz, vy (2.43)

I eavg(2) Eang (2)

A similar equation can be written for the electric field at the same spatial location

but at an earlier time t-At

E.(z,t— A= e slwg(z)[ ;—Ar Hy(z— %’-,t)dr - f;-Ar Hy(z+ % 'l:)d‘r:I - %f(%) J;-Ar Ex(z,7)d (2.44)

Subtracting the two equations we get
E.(z,0) = Ex(z,1— Af)+ (2.45)

_ 1 d (o] (Z) t
e (Z)[ R R R B o RS
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Assuming that the interval At is small enough such that the magnetic fields can be

assumed approximately constant within At and equal to the value at the center of the time

interval At
H(z+ ,T) R H(Z+ t——) for t—-At<1<t (2.46)
Hz-4,0)~HEz-5,1-3) for t-Ar<t<t (2.47)
ws get
E.(z, )= E\(z,t— AD)+ (2.48)

Al-savg(z)[HY(z 21— 2)~HyE+3,t 2)] P L_N Ex(z,t)dr

The above equation can be written in a somewhat different form

At Gav,g(z)
m[Hy(z M8y H el -] Af (Z)[ Ll B r)er

The term in the brackets is recognized as the average value of the electric field
within the interval (t-At, t). The above equation can be written in a more compact form

using the identity
Jho llo

where the free space velocity of propagation is denoted v,, the intrinsic impedance of free

11
= -é—-'e— = V()Zo8 (2-50)

|

space is denoted Z, (Zo ~ 377Q2) and ¢ _denotes relative permitivity. Introducing the grid
"propagation” velocity

Vera = 4 (2.51)

we can write the approximate equation for the electric field "updates” as

E.(z,) = E.(z,t - A)+ (2.52)

oL hy - 2 - - B+ 1= - A 0@ 37 [, B0k |}

Vgria Vgridg, avg(z)
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or
E.(z,H) » Ey(z,t — A)+ (2.53)

v Al
Zo Vg,(-),d €r, g(z) [Hy(z Tt %’_) _H}’(z + 2> r- %t_) —-Al- Gm’g(z)EX,avg(At)(Z, t)]

The average of the electric field between t-At and t, denoted E, sy a0 not be
calculated exactly because the exact temporal variation of the electric field is not known a

priori. However, assuming a linear variation within At interval, the average field is the

average of the values at t-At and t
Ei(z,t—Af)+ E,(z,1)
2
Substituting the time-average E,___,(2) into the update equation we get
E.(z,)) = Ey(z,1 - Af)+ (2.55)

E.(z,t— AD+E,(z, t)]

Yo Al Al N,
Zovg,.,de (z)[ }’(Z—?at_%) —Hy(z+5,t- )~ Al - Oag(2) - .

Es avoan(z, ) = (2.54)

which gives the final equation for the electric field updates as
1 Vo Z() . Al' Gavg(Z)
2 Vgrid Eravg (Z)
1 vo Zo-Al-Oag(2)
2 vg"id 8r,avg(z)

| =

E(z,t— AD+ (2.56)

E.z,H)=

1+

Vo 1
*Vgrid 8mvg(z)
2 vg"'d 8r,a'vg(z)

[Hyc-4,1-2)-H,z+2,1-2]

1+

The equation simplifies greatly for the case of non-conductive media (c=0)

Hyz-2t-9-He+4,t-9] 257

Ex(z,0) ~ Ex(z, t - At)+Zovgnd€r (Z)[

In the case of free-space (g¢=1), the equation simplifies further
Ex(z, ) ~ Ex(z,t— AD + Zo %%;[Hy(z ~d -y ge+d-8] (@59)

19




These electric field "update" equations also show that the electric field E and the

magnetic field H should be evaluated at points shifted spatially by AV2, and at instants

separated in time by At/2.

B. TRANSPARENT GRID TERMINATION IN 1-D

1. 1-D Grid

The electric and magnetic field update equations have been derived using local
coordinate systems, with origins at the centers of the magnetic and electric contours,
respectively. These equations now need to be "converted” to a global coordinate system,
that is to the grid of equi-distant sampling points along the z-axis (for 1-D). We will
assume that our domain ("grid") is a line segment of length L. The fields are sampled
using a spétial step Al=L/N_. The electric and magnetic field sample locations are
"interleaved"”, as shown below for N,=5. The first and the last spatial sampling points

form the grid edges. The spatial edge samples can be either electric field samples or

magnetic field samples. Although the selection of the field for the grid edges makes no

difference in principle, we will in general use electric field samples for the grid edges.

oM

Figure 2.5. 1-D E-field (black) and H-field (white) nodes.
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We would evaluate the fields within the grid first, since a known incident field
propagates from the center. Electric field update equations can now be "converted" to
electric field grid equations by replacing the variables z and t with the grid coordinates of

the electric field spatial and temporal sampling points
z—>kAL k=0,1..N, and t—nAt, n=0,1..N,
The electric field update equation for non-conductive media is
E. (kAL nAf) = E (kAL nAt — Af) (2.59)

Vo
Z"vgnds,av (Al

[H (kI - &, nAt— 2 - H,(kAI+ 2, nAt - 2 |
The notation can be simplified further by omitting the common Al and At terms, and using

a superscript for the index of the temporal sampling point

Ere-b-mrerd] e

En(k) = ErL(K) + Zo (%) - 1 &
r.avg

The electric field grid equation for conductive media, using the same notation as above, is
2 \Vgrid €ravg(K)

(Vgnd) - SArivg(ZI:;g(k)

EX(0) ~ E7 (ky+ (2.61)

Zo (V:fid) 3mvlg(k) [
(v ) Zo - Al - G avg(K) |
grid

H;"f(k—é)—H;’“Z(kﬁ)}

€r.avg(k)
Finally, the free-space electric field grid equation is
En(k) ~ ET1(k) +Zo( ) [Hy k- —) Hy (k+ —):l (2.62)

Similarly, magnetic field update equations can be converted to magnetic field grid
equations by replacing the variables z and t with the grid coordinates of the magnetic field

spatial and temporal sampling points
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z—>(k+DAL k=0,1.N.~1 and t—>(n+3;)At, n=0,1..N,~1

The magnetic field grid equation, using the same notation as for the electric field grid

equation, is
H;+%(k+ Hx H;_%(k-l» y_ Yo( Yo ) 1 B+ )-Er(®)]  (2.63)
2 2 Verid Hravg(k+ ';') ’ g
or, for non-magnetic media
s 1 3 1 Vo n n
Hy '(k+3)~Hy "(k+3) - YO(V@—-d) [EZ2(k+1)-E?(k)] (2.64)
The electric and magnetic field grid equations have the following general form
Em* = CgEd +Cg VHI" (2.65)
H ;ew =CmH ;Id +Cmp VE,‘:"’ (2. 66)

where C's are constants (real numbers) that depend on the media properties and the

velocity ratio v/v_,, , and "del" operator represents the spatial derivative (gradient). This

grid >
general form of the grid equations can be interpreted as follows: "the new value of E/H
field at a grid node is equal to the weighted sum of the old value of the E/H field at the
same node and the spatial variation of the old H/E field between the two

nearest-neighbor nodes."
2. Grid Termination

The grid equations derived above are valid for all the nodes except for the nodes
on the grid edges. The reason is that the grid edge nodes have only one neighbor node
instead of two like any node that is not on the grid edge. The edge nodes with a single
"neighbor" thus need to have equations different than the equations we have derived for
the "non-edge" grid nodes with two "neighbors". TGT requirement is conceptually very

simple and straightforward to implement in 1-D. To that effect we will use the concept of
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a multiport (a two-port in 1-D). It does not matter, in principle, whether the edge node is
an E field or an H field node. We will assume that the edge node for the two-port model
is an E field node. The input port of the two-port will be the nearest node "of the same
kind". Since we have assumed an E field node for the output port, the input port will be
the nearest E field node inside the grid. We could have also selected an E field node as the
output port and the nearest H-field node as the input port. However, the selection of the
same kind of node for both input and output ports has the advantage that the TGT results
obtained in this manner can be also used to solve the wave equation (a second order
partial differential equation) that has only one field as the variable and the grid with only
one kind of nodes. The figure below shows the two ports for the two (1-D) grid edge

nodes.

. h(t) _. .......... O~ .O ..... n.o ........ . h(t) .
grid edge grid edge

Figure 2.6. Modeling 1-D Grid Terminations as Two-ports.
The fields at the output ports E(0,t) and E(L,t) can be expressed as convolutions
of the fields at the input ports E(ALt) and E(L-ALt) and the two port impulse response

h(t). (The impulse responses for the two-ports on the left and on the right edges are

identical, by symmetry).
E.0,))=E.(ALH*h(® =] :) E.(ALDA(t—1)dr (2.67)
E.(L,H)=E.(L-ALH*h(?)= ﬂ) E.(L-ALDA(t—1)dr (2.68)
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The discretized forms of these equations, involving samples of the fields at t=nAt, afe the

discretized convolutions
E™0) == S EX(1)-h™? (2.69)

E'N)=Z, 5 EX(N.- 1) -h"? (2.70)

The convolution equations express the fields at the edges as weighted sums of the
time histories of the fields "just inside" the grid. . In that respect they are equations of the

same type as the equations for the non-edge grid nodes, except that they involve, in

general, summations with more terms. However, the impulse response h(t), as will be

shown, is a rapidly converging (to zero) function which reduces the number of relevant
terins in the convolution sum. The impulse response h(t) (actually its "sampled" form h")
needs to be determined only once, for a selected grid velocity v, =AVAt. The issue
remains how to determine the impulse response? The discretized impulse response h* will
be determined using the discrete equivalent of the Dirac delta function which we will
denote as 8°. Since there are two grid edges and two input ports (Fig. 2.6) one mnput port
will be set to zero and & will be applied to the other input port. Since, in 1-D, there is

only one h*” to determine we will set E (ALt) to zero and apply the Dirac delta function as

E (L-ALt)
E'(N,~1)=8" (2.71)

EN (D=0 (2.72)
This is depicted in Figure 2.7. Note that the impulse response h" is observed at z=

L and that the grid extends, theoretically, to infinity past the observation point z=L.

Since 8° = 0 for n > 0, the grid to the left of the (L - Al) node is effectively isolated form
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the observation point at L. This means that, to find h", we may just consider the ‘gﬁd to

the right of the L-Al node, as shown below.

E( ALt)=O E(LFALt): S(t)
.o
' ........ O. ......... 0.0.0 ........ .0.0‘ ....... O ....... 'O ‘
A A
gridedee gridedge

EQL-AL9=30)

h) ‘
'O:0.0 MOM )

gﬂdedgﬁ
Figure 2.7. Determining the Impulse Response.

The impulse response needs to be obtained as if the grid were not terminated at all
to the right of the observation point at z = L. If the grid were terminated, the
"reflectionless" termination condition would be needed and this is exactly what we do not
have and are trying to find. A grid extending to infinity does not require a termination
and thus "avoids" the termination problem. Although it is not possible, in practice, to
extend the grid to infinity, the grid can be made large enough such that any "reflections”
off the new grid edge would have arrived affer the impulse response has "converged"” to a
small selected value that we consider as "zero". The time it takes the impulse to

"propagate" to this new grid edge and back to the observation point is

2D  2NpAl
Ta= %=_A_I—=ZNDA1‘ (2.73)
At
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where D is the distance between the observation point and the new grid's edge and N is
the number of nodes between the observation point and the new grid's edge. The duration
of the impulse response h” that will not be "corrupted” by the reflections will be 2N,
Finally, it is assumed that the space outside the grid is free-space, and the grid equations

for the electric and magnetic fields will thus be the free-space equations

E(®) = EX(R) + Zol 5 )[Hy ‘(k-1y-H, (k+-)] (2.74)

Hy (k+—) Hy (k+—)+Yo( ) [E2(k) - EZ(k+1)] (2.75)

The order of the terms in the brackets for the magnetic field equation has been
reversed, such that the electric and magnetic field grid equations will have the same sign
(+) in front of the brackets. The above equations can be also written in a different form,

to reduce the number of multiplication's that would need to be done at each time step.

Multiplying the magnetic field equation by Z, we get

ZoH) 3 (4 by = ZoH) (k+—)+( ) (B2 - Ex(k+ 1) (2.76)
An auxiliary variable h, may be introduced
hy = ZoH, (2.77)
and the electric and magnetic field grid equations can be written using h, instead of H,
el ot
E:(k)=Er*<k>+(v%)[hy e-by-hy 2(k+§)} 2.78)
R e+ H=hy (k+ Ly ( ) [En(k) - E2(k+1)] (2.79)

The equations for the electric field (E, ) and for the magnetic field multiplied by Z,
(Z,H,) have identical forms, involving only one parameter, the velocity ratio v/v ., The

boundary impulse response h”, to be obtained using these equations, will thus be valid only
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for a selected velocity ratio or, equivalently for the selected grid velocity v d=Al/At. The

boundary impulse response h”, obtained using the equations for vy/v_.=1, is shown below.

Note that the plotting program interpolates linearly the values between the sampling points

nAt.

o o
(o] xQ
S
"

o

<
N

Amplitude

<
N
=T
h
e
n'"——‘—’—'—-'—

00 2 4 6
Time Step

Figure 2.8. Boundary Impulse Response.

The boundary impulse response for 1-D is very simple
h"=5!
The impulse response is non-zero only for n = 1 where it has the value of 1, which is a

delta impulse delayed by At and may also be written as
h() =6(t- AP

We can now write the grid equations for 1-D grid edges as follows
EN0) =00 EX(1) -h"P = EFN(1) - A = ET(1)

EiN) =S 0 EX(N; = 1) -h"? =E\(N; - 1) - h' = EFY(N. - 1)
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The above equations state that the fields at the grid edges are updated by simply
taking the previous values of their nearest neighbors inside the grid. Although the
boundary impulse responses are not so simple for 2-D and 3-D, they can be determined

using essentially the same procedure as shown for 1-D.

C. 1-D TGT RESULTS

We apply the geometrical model shown in Figure 2.6. The nodes on the edges are
E field nodes. The source is the electric field at the center node and the source waveform
is a unit amplitude delta pulse . This represents, in 1-D, a uniform plane wave propagating
from the center into +z and -z directions. By applying the "standard" FD-TD equation for
the nodes inside the grid and the TGT equations for the grid edges we obtain the power
within the grid as a function of time as shown below. It is clear that the power within the
grid is constant until the wave has "left" the grid when it falls to zero abruptly. The 1-D

grid with TGT termination thus behaves like an "ideal" grid.
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Residual Power in TGT Boundary

Magnltude

0 50 100 150 200
Time Steps

Figure 2.9. Residual Power for TGT.
We will next compare this result with that for an "infinite" grid. Note that the

power is calculated within the same grid region as in the previous figure.

Residual Power in Free Space
2 v T
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Magnitude
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Figure 2.10. Residual Power for an "Infinite” Grid.
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Subtracting the residual powers for the TGT and the "infinite" boundary we get
the result shown below. Note that the TGT boundary for 1-D gives the same result as an

infinite grid would.

Residual Power Difference Between TGT Boundary and Free Space
1 T T T

0.8 -

0.6 E

o
IS

[=]

Magnitude
5 o ¢
A M O N

&
[0)]

-1 1 2
0 50 100 150 200
Time Steps

Figufe 2.11. Residual Power Difference for TGT and an Infinite Grid.
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III. ANALYSIS OF TGT FOR 2-D FDTD

A. FD-TD FORMULATION IN 2-D

1. FD-TD Equations in 2-D

The electromagnetic fields and the media parameters in 2-D problems do not vary
with one spatial coordinate. We will denote this coordinate as z. The field invariance with
the z-coordinate can be mathematically expressed as

- -
9E _o ama 22 _o 3.1)

0z oz
The electric and magnetic fields will thus be fumctions of the spatial coordinates x
and y, and time t. The media will be assumed stationary. An arbitrary 2-D
electromagnetic field can be expressed as a hnear combination (superposition) of
Transverse Electric (TE) and Transverse Magnetic fields [Ref 5]. The TE, field

components are E, E, and H,

= - -
Em(x,p,0) = Ex,5,0 X +Ey(x.y,0) ¥ (3.2)

- ->
H e,y 1) = Ha(x,3,1) Z (3.3)
and a TE, field can be represented as shown below (the z-axis direction is out of the plane

of the paper).
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Figure 3.1. TE, Field.

The direction of propagation is indicated by the propagation velocity vector N

The unit vector in the direction of propagation and the electric and magnetic field vectors

form a triplet of mutually orthogonal vectors. The "dual" TM, field has the components

H, H, and E,

-2 - -
H pdx,y,0) = Hx(x,y,0) X +Hy(x,y,0) y

as shown below.

= -
E W(xay: t) = Ez(x,ya t) z

\ 4

Figure 3.2. TM, Field.
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Our objective is to determine the discretized forms of Maxwell's curl equations in
the integral form for TE, fields

§e, (B0 + B 07 Jodis=-2{ [, e hHr,07 05| G9)

§o, (63,07 o din=2{ [, eton) Eer 0T +Ew3,07 | o dou}+ (.7)

ofl, o) Een T + B0 |odon

and for TM, fields
§, [ 02 o ds =2 [, e[ uer 03 +H,@0.07 | o2} 69

‘ -
§. [Herd? +H@y07 Jodn= (3.9)

N, s B0 douf + [ o[ B2 ] o
Note that the the second curl equations do not ha{/e the source current terms, since
it has been assumed that there were no source currents in the domain of interest. The
contours of integration for the electric and the magnetic field circulations are, in general,
different and are thus labeled C for an electric field contour and C,; for a magnetic field
contour. Similarly, the surfaces associated with the contours are labeled S for the
magnetic flux and S, for the electric flux. The electric and magnetic field contours for a

TE, field are shown below.
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Eyf(x-dx/Z,y,t)T / Ey(x+dx/2yt>
Hatx;ysy
>
Ex(x,y-dy/2.t)

Figure 3.3. Contours for TE, Electric and Magnetic Field Circulations and Fluxes.

The electric field contours C, and the magnetic field contours C,; are square (Al by

Al) contours, but in orthogonal planes. The C_ contours are in the xy-plane, while the C,

contours are in the yz-plane. The contours can be compared to links of a (2-D) chain

fence, evoking the idea of electric and magnetic field linkage in two orthogonal directions.

The "dual" C; and C, contours for a TM, field are shown below

Hy(x dx/2,3,1) T ‘ ‘? Hy(X+dx/2 y t)
; “Fafx; ¥ ]

>

Hx(x,y-dy/2.t)

Figure 3.4. Contours for TM, Electric and Magnetic Field Circulations and Fluxes.
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The electric and magnetic contours and their associated surfaces will be used to discretize

Maxwell's curl equations.
2. Derivation of TE, Magnetic Field Update Equation

The discrete equivalent of the TE, electric field circulation will be determined next.

A contour C; is shown below

Ex(x,y+dy/2,t)
-

EY(x-dx-/zay:t) T / Ey(X+dX/2,y:t)
_ Hz(x,y.t)

—
Ex(x,y-dy/2.t)

Figure 3.5. A Contour for TE, Electric Field Circulation and Magnetic Flux Calculations.

The center of the surface S; is assumed to have the coordinates (x, y). We will
assume a uniform grid with Ax=Ay=Al A local coordinate system (§,y) will be
established, with the origin at the center of the contour such that any point (x',y") within or

on the contour C can be specified by its local coordinates £ and y
x'=x+§ y'=y+wy where —élsgs+4—l and —él.<_\ys+g
2 2 2 2
The local coordinates will be used in evaluation of the line and surface integrals
that constitute the integral forms of Maxwell's equations. The circulation of the electric
field around the electric field contour C, , assuming counter-clockwise reference direction

._)
such that the normal to the surface S, is in the direction of the magnetic field H(x,y.0,
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can be evaluated approximately, assuming that the electric fields are constant over the
length Al, along the edges of the (Al by Al) square contour
_._)
§ (B V.07 +EG V.07 |dim (3.10)
E

[Ex(x>y - _Az_lz t) +Ey(x + %7};: t) "Ex(x:}"*' %1-9 t) _Ey(x - %_I’y: t)]Al
The magnetic flux through the surface S; can be calculated using the local coordinates

ﬂSE WeR D) : AR ER b= (3.11)
[5 [ e+ ey + WH+Ey+y,0 7 » Ty
2 "2

There are infinitely many ways to model the variation of the magnetic flux density

with the local coordinates & and y within the contour. We first need to postulate a
certain variation of the magnetic field with & and  such that the integral can be evaluated
over S;. The simplest model assumes that the contour width Al is small enough such that
the magnetic field H(x+&,y+y,t) within the contour may be assumed constant and equal to

the value at the contour's center H(x,y,t).
H(x+&,y+w, )= H:(x,y,1) (3.12)

This is equivalent to using a piece-wise constant or 2-D "pulse" expansion
approximation of the actual magnetic field variation with the z-coordinate. The above
assumption allows that magnetic field , although constant within a contour, can change
from one contour to an other. This yields an approximate expression for the for the
magnetic flux

[I,, w07 o dos m ey, [ [ e+ + ey (313)

The integral of the permeability p(x+C,y+y) can be re-written in the following manner
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+4 ol +4 ol :
J 2 73 nee+ & y+ ey = (A [j Jala u(x+?;,y+w)d€dw] (3.14)
2 2 2 2
The term in the brackets is recognized as the average permeability p, within the contour
Ce
1 [+ [
Bange)) = 5 [73 |73 we+E,y+y)ddy (3.15)
An? -5+
The approximate expression for the magnetic flux through S; can now be written using the

average permeability as

_)
[, e PO Y077 o dss = (WD G V2,0 (316)

Again, this approximate expression resulted from the piece-wise constant
approximation of the magnetic field with respect to x and y-coordinates. The main
advantage of the piece-wise constant expansion employed above is its simplicity. Better
accuracy can be achieved by using more involved models for the field variation with x and
y, but at the expense of increasing the computational time. The first curl equation of

Maxwell can now be replaced by an approximate equation

[‘Ex(x7y— ézl_a t) +Ey(x+ %I_ay: t) ’Ex(x’}"*' %7 t) —Ey(x‘ %J@ t)] ‘Al~ (3 17)

P :
~2{ Mg () H=6,7, 018D}
which can be simplified as below because of media stationarity
Ex(xzy - %: t) +Ey(x + %:y: t) 'Ex(x,y + A?I’ t)_E)'(x— %layr t) =~ (3 18)

2 {H,9,0} M- g 7))
This equation can also be re-written as
g;{Hz(x,y, D} (3-19)

A1_um(x,y)[Ex(x,y 8 ) +Ey e+, - By + 2,0~ Ey(x— 2,3, 0) ]
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The time derivative operator in the above equation is typically "replaced" by the
finite difference approximation. However, just like in 1-D, we present an alternate
approach, such that the approximation of the field time variation is shown to be analogous
to the approximations already introduced for the field spatial variation. The above
equation is integrated with respect to time to get an approximate equation for the

magnetic field at the present time t

y——l
Hz(xaya z) ~ Al - uavg(x,y)x (320)

t t 4 t
[ Buy -2 e~ [, By + & 0+ [, Bya+ 9,00 - [, Byt~ 33,0k
A similar integral equation can be written for the magnetic field at the same spatial

location but at an earlier time t-At

H.x,y,t- A~ ZI-T_I(x_yS x (3.21)
avg l

t—-At t=-At 1At 1—-Ar
([ By~ Loodi- [, Bey+ Lo [ B+ Sy o= [T Ee- 5, o) |
Subtracting the two equations we get

H.(x,y, t) ~H,(x,y,t— Af) - mx (322)
avghs

[, By~ Lodi- [, Bey+ L+, B+ Sy an-[ BE-5, v |

The integrals on the right-hand side can not be evaluated exactly, because the
exact temporal variation of the electric fields within the At interval prior to t is generally
pot known. However, the integrals can be evaluated approximately by assuming a certain
variation of the electric field with the temporal variable . The simplest approach,
consistent with the assumptions made for the field spatial variation, would be to assume

that the interval At is small enough such that the electric field can be assumed
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approximately constant within At and equal to the value at the center of the time interval

(t-At, t)
Ex(x,y- 2, 1) mEcx,y—5,1-5) for t-At<t<t (3.23)
Ex(,y+2,1) o Ex(x,y +5,1-5) for t-At<t<t (3.24)
E,(x-2,y,1)~E(x-5.5,1-5) for t-At<t<t (3.25)
Ey(x+-§—1,y,'c)zEy(x+%,y,t——%) for t-At<t<t (3.26)

The above represents a piece-wise constant approximation of the electric field variation
with respect to the temporal variable t. The approximate expression for the magnetic field

at location (x,y) and at the time t now becomes

H.(x,y,f) = H,(x,y,t—At) — KI—ENT;)— X (3.27)
avg\Vy

[Ex(x:y— %:t_%)_Ex(an”*‘%at"%) +Ey(x+ézl_>yat—%’—)_Ey(x-_%ay7t—%£)]

The above equation can be written in a somewhat different form, using the identity

B HoMr fEo Jho JHo M JHogo ‘/Eu' ZoWr Hr '
€0

where the free space velocity of propagation is denoted v,, the intrinsic impedance of free
space is denoted Z, (Zo ~ 377Q2), and p, denotes relative permittivity. Introducing the
grid "propagation” velocity

Vgria = %—ﬁ- (3.29)

we can write the approximate "update" equation for the magnetic field as

Vo 1
—_—x 3.30
Verid W r.avg(X, ) ( )

I:Ex(x:y_ %’t— %) _Ex(x’y_*'%at_ %) +Ey(x+%1',yat_%")_Ey(x" %I‘vyvt_%{

H.(x,y,)) = H(x,y,t—AH) Yo

The equation simplifies for the case of non-magnetic media (1=1)
H.(x,y, 1) ~ Hy(x,y,t— Af) — Yo%%d x (3.31)

[Ex(xd"' %I_:t_%) _Ex(x:y"-éz-la t- %{) +Ey(x+%1,}’,t”‘%"‘)"Ey(x“%],y,t"%)]
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The last two equations show that the magnetic field H and the electric field E are
evaluated at points shifted spatially by Al2, and at instants separated i time by At/2, just
like in 1-D. The relationship between spatial and temporal "samples” of the electric and
the magnetic fields is thus the same and the samples are shifted with respect to each other
by one-half of the sampling interval. The approximate equations for the electric field

"updates” can be derived using the same procedure shown for the magnetic field update

equations.
3. Derivation of TE, Electric Field Update Equations

We will start with the Maxwell's curl equation for the circulation of the magnetic
field
., Hxy, §7 e dly= 3@;{ I, et y)[E,,(x, 1,0 +Ey(x,y, t);’] .ZgZ}Jr (3.32)
I, o) EernF +Exer,03 | don
The discrete equivalent of the magnetic field circulation needs to be determined
for two sample contours a contour in a plane parallel to the yz-coordinate plane, and a

contour in a plane parallel to xz-coordinate plane.

Ca

Hz(x-A 1/2,y,t‘)/" % Ey(x,y.t) Az(x+ Al/2,y,0

Figure 3.6. A Contour for Updating E..
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A local coordinate system (&,£) will be used, with the origin at the center of the

contour. Any point (x,z)) within or on the contour C; can be specified by its local

coordinates
Al .

X' =x+& z/=z+( where -5 < §S+—Az—l and

The circulation of the magnetic field around C,; , assuming counter-clockwise reference

_Al Al

S SCs+S

direction such that the normal to the surface S, is in the direction of the electric field
E,(x,y,1), is therefore given exactly by the following simple expression (because there is

no magnetic field variation with the z-coordinate)

§. HA, YD) -dz,,_j Hx-2y 07 odiz —J.NH(x+2,y,t)z0d§z (3.33)

—>
§ H.d Y DZ edlp=[Hx- Ly, 0~ H(c+ 23,0 -Al (3.34)
Cy
The electric flux through the surface S, can only be evaluated approximately, simce
the exact way that the electric flux density D,(x,, ?) = €(x,y)Ey(x, y, ) varies with x and y

is not known a priori. First we need to evaluate the flux integrals
- =
HS e,y , DEy(x',y',0)y e dsy = (3.35)
H

2 1+4 - >
[2 72 e+ Ey+WE,+Ey+y, )Y o Y deds
2 2

- =
[, o6/ IE( Y, DY » dsy = 3.36)
H
2 sl - -
272 ot +Ey+ WEL+EY +u, DY o Y deds
2 2
Since the integrands are not functions of the local z-coordinate £ and the local

coordinate =0, the surface integrals are simplified to line integrals
-> 2 +4
[, cG+ERB+E»DY o do= Al [7] s+ ENE+E RO (B3T)
2

—-> 4 :
[, oG +ENE(+ERDY ¢ dsn=Al [} oG +ENEG+ER.DE  (338)
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Next, we assume that the contour side Al is small enough such that the electric
field E(x+£,y,t) within the contour may be assumed constant and equal to the value at the
contour's center E(x,y,t). This assumption yields approximate expressions for the flux

integrals

-> 4
[y, e +ENB+E7.0Y o dinm Al By [ G ote+E0dE  (3.39)

> 2 4
[ oG+EDE@+ERDY sdsnmAl-Eywy,)- | s cc+ENE  (3.40)
H 2
or, using the permittivity and conductivity averaged in the x-direction

%
[l st ENBG+ER DT e din= Q) By D smp@y) (4D

[, ot+ENEE+E3.07 o don =B Byy,d-Cumlss)  (:42)
The second curl equation of Maxwell can now be replaced by an approximate equation
[Hoe- Ly, 0~ Hix+ L. y,0]-Al (3.43)
L { (e DB, DD} + (A - Gangel3) - E53,1)
which can be simplified to
H.(x~2y,)-H(x+5.y,)= (3.44)
ange(,) A - S (B (53,0} + Al - Cargsl,3) - By (5,3, )
The approximate equation can now be re-written as
2 (B, w.y, 0} ~ (3.45)

1 A A Cavgx(X,))
YUY X~ .0, 0) 1 )T 7 )
A s o $00 =i+ £ =S D00y Byt

The above equation is integrated with respect to time to get an approximate equation for

the electric field at the present time t
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[ He- Ly, v)di - er(x+2,y,'c)d—g] (3.46)

Eyx,y,f)~ m[

_ Oavgx )
Eavgx (x3 Y ) Io Ey(x:y, ‘C)dt

A similar equation can be written for the electric field at the same spatial location but at an

earlier time t-At

By, t-80 = gt [ o=, 0= [ e+ i | G40

Savgx(%,7) J‘l

x,y,T)dt
" Eap(x,)) S0 Eey.7)

Subtracting the two equations we get
E}’(x:ya t) "Ey(x:}’,t"Af) ~ (348)

m[f_ H(x-%,y,0d —E_N H.(x+4,y, 't)d'c]

S BN (1 ey,

Savgx(x y)
which can also be written as
Ey(x,y, )~ (3.49)
Ey(x,y,t—Af) + avgx(x y)Ut " H(x—3 4y, 1)dt— I H(x+4 5 ‘r)d'c]
_ Oaex(%,)
o) e BN OE

If the interval At is small, the magnetic fields can be assumed approximately constant

within At and equal to the value at the center of the time interval At
Hz(x+§,y,r)sz(x+§,y,t—§) for t—-At<t<t¢ (3.50)

Hix-2,y,1) v H(x- 53,13 for t-At<1<t (3.51)

Using the above approximation we get
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Eyx.y,H= (3.52)

E)’(x-)yat“At)_*- I:Hz(x zayat__) H(x+2:y> ”—)]

Al Savgx(x,y)
O avex(X, Y) [t
=22l [ Byx,y, 1)k

SWgX(x:y)
The above equation can be written in a somewhat different form
Eyx,y, )~ (3.53)
Ey(x,y,t_At)—*—__—(x_——).[Hz(x 2 ’y’ 2)"Hz(x+%1,y>t_ %)]
EavgxlX, )
- Ga"gx(x:y)l:-l_ 1 ]
Ataavgx(xjy) At At EY(x>y> ‘t)d‘t

The term in the brackets is recognized as the average value of the electric field component
E, at (xy) within the interval (t-At, t). The above equation can be written in a more

compact form using the identity

0
11 M 1 11 [Re1_ 1 (3.54)
808;- ‘/—IIB— Jg?ﬁ‘b‘&r ‘[“'0_80 8() 8)- 8;-

where the free space velocity of propagation is denoted v,, the intrinsic impedance of free

(]

space is denoted Z, (Zo = 377Q2) and ¢, denotes relative permittivity. Introducing the grid
"propagation"” velocity

Vs =& (3.55)

we can write the approximate electric field "update” equation as
@xﬂz (3.56)

Vo 1 Ar Al
= Zo L AL g (6, V) E g% 5 1)
OV grid & aavge (5, ) avge (X, )y avg(an (X, )5

The average of the electric field between t-At and t, denoted E__ ., can not be

calculated exactly because the exact temporal variation of the electric field within the At
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interval is not known a priori. However, assuming a linear variation within At interval, the

average field is the average of the values at t-At and t

E,(x,y,t— A +E,(x,p, ¢
Ey,avg(Ax)(x,y, t)z y( y 2) ,V( y ) (3.57)

Substituting the time-average E__,(x.y,t) into the update equation we get

Ey(x,y,0= (3.58)

v 1
Ey(x,y, A+ Zo vgfid 8ravgx(x:y) [HZ(x - %,}’, = 92’-) B Hz(x + %’y> 1= %{)]_

. Vo 1
vgﬁd 8r,avgx(x> y)

E)’(x’y: - At) +Ey(xay: t)
2

-Al - Oaygx(x,y) -

which gives the final equation for the electric field updates as
1 vo Zo Al -Cage(x,y)

T 2Verid  Eragl(%,))
E,(x,y,t— A)+ 3.59
1 vo Zo-Al-Cagl(X,)) sy ) ( )

2 Vg rid € r.avgx(xay )

1

Ey(st t) ~®

1+

Vg 1

OV "
£r1d & ravgx (X, )) r Al A Al N

FACE RS £ t—7)— A Ak
1 vo ZO'Al-Gavgx(x’y)LH (x 2 2) Hz(x+2 y,t 2)]

2 vgrid Sr,avgx(x:y)

1+

The equation simplifies greatly for the case of non-conductive media (6=0)
Ey(x»y, t) = (360)

\4 1
E, (x,y,t—Af) +Z°ng'd8,avg,(x y)[Hz(x— -’;—',y, t— %1) —H(x+ %’,y, f— %_’):l

In the case of free-space (¢,=1), the equation simplifies further
v
Ey(’%)’a t) ~ Ey(xay’ = At) +ZO¢{H‘T(x— %!zy: - ézt_) —Hz(x+ %9.);7 t- %I_)] (361)

The above equations are the update equations for the y-directed component of a TE,

electric field. Similar equations will be formulated next for the x-directed electric field

component.
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/ Haoy+dl2,0)

= Ex(xy)

L /I;z(x,y_dl/z,t)

z

Figure 3.7. A Contour for Updating E,.

A local coordinate system will be used, with the origin at the center of the
contour. Any point (y,z)) within or on the contour C,; can be specified by its local

coordinates

y' =y+y z/=z+{ where —AZZS\VS+~421 and —42—15(;3492—1

Then, by applying the same procedure drived for E, field component, we get the final

equation for E,_electric field component as shown below
1 vo ZoAl-Gag(X,)

2 Vgrid Eravgy(X,Y) '
E.(x,y,t—Af)+ 3.62
1+ 1 vo Zo-Al-Samg(x,y) (> ) 3.62)

2Vgrid  Eravg(X,)

EX(xvya t) i

Vo 1
*Verid € avgy (%) r
- - H, 44 A - H, _N
o 7 Al Guglip LY T B ) T Hy =5 2]
2 Verid Sr,avgy(x,y)

1+

The equation simplifies greatly for the case of non-conductive media (6=0)
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Ex(x,y,0) = (3.63)

v
EuGos 1=+ Zog s oy + 4= §) = Haly = 5.1= )

In the case of free-space (g=1), the equation simplifies further
v
Ex(x,y, 1) ~ Ex(x,y,1— Af) +Zo;;’%;[Hz(x, -8y - H (e y-L1-2)] (3.64)

The above equations are the update equations for the x-directed component of a TE,

electric field.
4. Derivation of TM, Electric Field Update Equation

The discrete equivalent of the TM, magnetic field circulation will be determined
next. A sample contour C, that will be used to determine the electric field update
equation is shown below

Hx(x,y+dy/2,t)
>

Hy(x-dx/2,y,t) T / T Hy(x+dx/2,y,t)
Ez(x,y.t)

Hx(x,y-dy/2.t)

Figure 3.8. A Contour for TM, Magnetic Field Circulation and Electric Flux
Calculations.

The center of the surface S, is assumed to have the coordinates (x, y). We will
assume a uniform grid with Ax=Ay=Al. A local coordinate system (§,y) will be
established, with the origin at the center of the contour. Any point (X,y’) within or on the

contour C; can be specified by its local coordinates £ and
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x'=x+& y' =y+y where ——AZ—ISES+% and —%s\ysﬁ%{

The local coordinates will be used in evaluation of the line and surface integrals that
constitute the integral forms of Maxwell's equations. The circulation of the magnetic field
around the magnetic field contour C, , assuming counter-clockwise reference direction

_.)
such that the normal to the surface S is in the direction of the electric field £ (x,y, ), can

be evaluated approximately, assuming that the magnetic fields are constant over the length

Al, along the edges of the (Al by Al) square contour
§CH [Hx(x’,y’, t)? +H,(x,y’, t)?] o:il_H) ~ (3.65)
[He@,y— 2,0 +Hy(x+ 2,3, 0 - Hele,y + 5,0~ Hylx - 4y, 0]al
The electric flux (the "displacement current”) through the surface S, and the

current flux (the conduction current) can be calculated using the local coordinates
-5 >
ﬂs,, e(/,y)E (XY, ) Z e dsy = (3.66)

A L A
I 4 I "2 e +E Y+ WEF+EY Y, 07 e Zdidy
2 2

] 5, OO YELY, Nz e dor = (3.67)

ol

f _: f:g o(x+&,y+WE(x+&y+vy, t)_z’ . ?dgdw

N

There are infinitely many ways to model the variation of the electric flux density
with the local coordinates £ and  within the contour. We first need to postulate a certain
variation of the electric field with & and w such that the integral can be evaluated over Sy,
The simplest model assumes that the contour width Al is small enough such that the
electric field E(x+£,y+y,t) within the contour may be assumed constant and equal to the

value at the contour's center E(x,y,t)
E(x+&y+vy,0) = Ex,y,1) (3.68)
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This is equivalent to using a piece-wise constant approximation of the actual electric field
variation with the z-coordinate.The above assumption allows that, although the electric
field is constant within a contour, it can change from one contour to an other. This yields

approximate expressions for displacement and conduction currents

- - L& +_A2_f
[, e/ VB 0Z o dss ~ By [ 4 [ s+ by + ey (3:69)

- 7 A ey A
[l o/ By, 07 o dsewExleyn)- [ [ oter by +widedy  (3.70)
2 2
The integrals of the permittivity e(x+£,y+y) and the conductivity o(x+E€,y+y) can be

re-written in the following manner

Te

Te
wR o~

N~

e(x+&,y+ w)d&d\u} (3.71)

[

5 5 sterty ey = @07 (All)z I

Ifi;’ | : o0 +&,y+y)dEdy = (Al - k A‘Dz I"j jf§ o(x+E,y+ w)d&dw} (3.72)

The term in the brackets is recognized as the average permittivity €., and the

average conductivity c,,, within the contour C,.

o) = b 3 [ s+t ey (3.73)
Ses(e0) = =L 72 [73 o+ £, y-+ W)dEdy (3.74)
Ah " "2°72

The approximate expression for the displacement and conduction currents through
S, can now be written using the average permittivity and the average conductivity as

—)
[l s By D7 o dom AD eas@NE5 1D (375)

.—)
[, ot/ yE" Y, )7 o dsy = (AD*Camg(c,NE:(x,7,0)  (3.76)

The first curl equation of Maxwell can now be replaced by an approximate equation
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[H.(y-2L 0+ Hy(e+ £.3, 0 - Helw,y+ 5.0 - Hy(x = 5.7, H]-Alx ~(3.77)
2 {[ows (6 B3, DIAD”} + [Oum (. )Ex(x. Y, DI(AD’

which can be simplified (because of media stationarity) to
Ho,y- 2 +Hy(x+ 2.y, - Hex,y+ 5,0 - Hyx - 5.3,0 = (3.78)

O (B30 Al Bmg((,9) + Oang(3) - Ex3,0) - Al

Ths: equation can also be re-written as

0
2 By, D)~ (3.79)
___._]_‘__ — Al Al _ A _ N
oo (x’y)[H,(x,y >0 +Hy(J(C+ ;,y, - Hox,y+ 2 5~ Hyx-4,,0]
CavglX,)
T e N EZ s t
8“"8(x’y) (xy )

The above equation is integrated with respect to time to get an approximate equation for

the electric field at the present time t

Nl
E:(e.y,) % 17 el (3.80)

t t 4 1
([} Hoey~ 2,0 [ Hutooy+ $, 0 + [ B+ &y, 0@ - [ Hyx-4, yo0 |
_ Ga"g(x’y) . !
A similar integral equation can be written for the electric field at the same spatial

location but at an earlier time t-At
E(x,y,t—Af) = (3.81)

e o [ Haeye S + [ Hes Sy,
L'\l . Savg(x,y) [JO Hx(x7y 2 T)d‘: J’O Hx(x,y+ 25 T)d‘t +j-; Hy(x+ 2 ,y, ’C)d[

-5t A _ O avg(X, ) N
0 HY(x 2 Vs T)dT] Savg(x,y) JIO Ez(X,y, T)d'f

Subtracting the two equations we get
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~ - 1 .
Ez(x:ya t)~Ez(x>y9t At) + Al - Savg(x,y) b (382)

[ Hy-Eode-[ | Hy+$oas [ e+ Sy o= [ Ha-5y, 0]

c“"g (x>y ) 4
- Eamg(X,)) . '[I-At E.(x.y, )

The integrals can be evaluated approximately by assuming a certain variation of

magnetic field with the temporal variable 1. The simplest approach, consistent with the

assumptions made for the field spatial variation, would be to assume that the interval At is

small enough such that the magnetic field can be assumed approximately constant within

At and equal to the value at the center of the time interval (t-At, t)

H.(x,y- %,T) ~H,(x,y— %, t— -421) for t—At<t<t (3.83)
H (x,y+ %,T) ~ Hy(x,y+ %, t— %) for t—-At<t<t (3.84)
Hyx-2,y,0)~Hyx-%,y,1-%) for t-At<t<t (3.85)
Hy(x+%,y,r)zHy(x+5‘21,y,t—%’-) for t—At<t<t (3.86)

The integral of the electric field is recognized as the average value of the field

within the At interval
@_M_éf[_l_ ' ]_cavg(x,y)-Af.
Eavg(X,)) At de-nr Ex(x,y,v)dt | = Eavg (X)) Ez avgan(x,y,8)  (3.87)

The average value of the electric field is approximately
E.(x,y,0) +E;(x,y,t— Af)
2

The approximate expression for the electric field at location (x,y) and at the time t

E; avgan(x,y, ) = (3-88)

now becomes

At
z 9 ,t zEz > ’t_ t .
E.(x,y,9 (x,y,t—Af) + __—_Al-eavg(x,y) X (3.89)

[HoGe,y-2,1-8) - Hux,y+ L 1= &)+ Hy(x+ Ly, -9 - Hyx - $.3, - D]

_ Gm’g(x’y) ) At . Ez(x,y, 2‘) +Ez(x:y>t* At)
San(x9y) 2

51




The above equation can be written in a somewhat different form, using the identity '

_ 11 _ W 1 1 __ 1 [Ho1 1
08 [Wo JEo JTo &r  JHoEo €0 € g,

where the free space velocity of propagation is denoted v,, the intrinsic impedance of free

VoZo

: (3.90)

space is denoted Z, (Zo = 377Q2), and &, denotes relative permittivity. Introducing the grid
"propagation” velocity

Verid = g—ﬁ (3.91)

we can write the electric field equation more compactly

Ex(x,7,0) ~ Ex(x,y,t— Af) + Zo%m x (3.92)

[Huey-L -9 -Hiey + 41D +Hy e+ 3= D - By -4.0.-9)]

_ Vo . Ga"g(xay) Al _Ez(x,y: t)+EZ(xayat_At)
0 Verid 8r,avg(x,y) 2

The electric field "update" equation is obtained by grouping the like terms in the

above equation

E.(x.y, )~ (3.93)
1__1 vo Zo - Oavg(X,y) - Al =20 1
2 vgrid S’Wg(x’y) Vgrid SrGVg(x:y)
. : -E.(x,y,t-Af) + -
10 Zo Gage)) A1 P TN 7 g e) AL

{HuGey- z,r——) Ho(ey+4,1-8) + Hye+ 2, y,t- ) - Hyx = 5.3~ )]
The equation simplifies for the case of non-conductive media (6=0)

B3~ Ex(e,3,1=A0) + Zog oo (3.94)

[Holey -2t - Huwy+ & 1= D+ Hye+ 43, 1= ) - Hye - §.0.1- )]
The approximate "update" equations for TMz magnetic field components will be derived

next.
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5. Derivation of TM, Magnetic Field Update Equations

We will start with the Maxwell's curl equation for the circulation of the electric
field
- —>
§ E(y)Zeds= ——"’—{ [l etn)| By, 0 +Hy@r.07 | dsE} (3.95)
Cg Ot |+ se
The discrete equivalent of the magnetic field circulation needs to be determined
for two sample contours a contour in a plane parallel to the yz-coordinate plane, and a

contour in a plane parallel to xz-coordinate plane.

C

Ez(x-A 1/2,y,t)/ ¥ Hy(x.y.t) AAZ(X+ AV2,y,1)

Figure 3.9. A Contour for Updating H,.

A local coordinate system (§,() will be used, with the origin at the center of the
contour. Any point (x,z') within or on the contour C, can be specified by its local

coordinates

x'=x+& z/=z+( where ——%S&S-{-—%—l and —%SCS%

The circulation of electric field around C, , assuming counter-clockwise reference

direction such that the normal to the surface S is in the direction of magnetic field
Hy(x,y,1), is therefore given exactly by the following simple expression because there is

no electric field variation with the z-coordinate
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-> :
§C E(x,y, )7 odig = (3.96)
“Cg
+4 e k1 > .
J._-gz E(c-%y,0)7 odz "j%— E(x+%y,07 edZ
. N Al

§o, BV D7 edls =[Exe-§.0.0-B(x+ 3y,0] -0 (3.97)
The magnetic flux through the surface S; can only be evaluated approximately,

since the exact way that the magnetic flux density
By(x:% t) = u(x,J’)Hy(x:ya t) (398)

varies with x and y is not known a priori. First we need to evaluate the flux integral
I, 6. DH,G 5,07 o ass = (3.99)
[ [ uer ey e G +Ey+ v « Ve
Since the integrand is not a function of the local z-coordinate { and the local coordinate
=0, the surface integral simplifies to a line integral
- W
I, B+ B +E3,0F + dse = AL[ 5 i+ ENH G +E.3,0 (3.100)
Next, assume that the contour side Al is small enough such that the magnetic field
H(x+E,y,t) within the contour may be assumed constant and equal to the value at the
contour's center H(x,y,t). This assumption yields an approximate expression for the flux
integral
- Y :
5, MG +ENH 82,0 o dsp = Al-Hy(wy, ) - [ 4w +E0)E  (3.101)
or, using permeability averaged in the x-direction '
[, e+ E NG AERDT o s = B 50D Hnpesy)  (3:102)
The first curl equation of Maxwell can now be replaced by an approximate equation
[Ec- Ly, 0 -E-x+£.3,0)]-Al~ —%{[uavg,(x, WH(x,y,HAD*} (3.103)

which can be simplified to below equation, because of media stationarity
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e~ 3,0~ B+ 23,0 % e (e3) - M- S(H (3, 8)  (3.104)
The approximate equation can be re-written as

?%{Hy(x’y”)}N [E-c-23.0-E(x+4,y,0]  (3.105)

Al-p gx(x,y)

The above equation is integrated with respect to time to get an approximate

equation for the electric field at the present time t

o~ =1 _A _I Al
Hyx,y,0) ~ Al_ung(x,y)UOEz(x 8y, 0t - [ Eu(e+£,y,1dt | (3.106)

A similar equation can be written for the electric field at the same spatial location

but at an earlier time t-At

Hy(x,y, 1~ Af) = [ B~ Ly [ E(x+2,y,‘c)d1::| (3.107)

Al- Havgx(x J’)[
Subtracting the two equations we get

Hy(x,y,0) = Hy(x,y,t - Af) = (3.108)

_-'1__ 4 _ A _ t A
Al- qux(xay)[j"N Ealx 2°Y> D)dt J.I—At Er(x+ 4] T)d‘r]

which can also be written as
Hy(x,y,0) ~ (3.109)

Hy(x,y,1-Ad)+ [0 Ee-y0di-[ Efc+yvydi]

Al - ua—vgx(x y)[

Assuming that the interval At is small enough such that the electric fields can be

assumed approximately constant within At and equal to the value at the center of the time

interval At
Al - Al Ar
E(x+5,y,0)=E(x+3,y,t—5F) for t-Ar<t<t (3.110)
E(x-4.y,0)~E(x—%,y,t-%) for t-At<1<¢ (3.111)
we get
Hy(x,y,0) = (3.112)

Hy(, -840+ (B ey~ ) Eue— oy, 9]

avgx( ay)
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The term in the brackets is recognized as the average value of the electric field
component E_ at (x,y) within the interval (t-At, t). The above equation can be written in a

more compact form usingthe identity

e
1_11_Je 1 Blovrd @)

[TRRETF T mmmur \/m o Lir

where the free space velocity of propagation is denoted v,, the intrinsic admitance of free

space is denoted Y, (Yo= ZL’ Zo=377Q) and p  denotes relative permeability.
0

Introducing the grid "propagation” velocity

Vgria = ﬁ—f (3.114)
we can write the approximate equation for the electric field "update" as
Hy(x,y, )= (3.115)

v 1
H,(x,y,t— A+, vg:_d ) (Be+Ly,t-) - E(x-2,y,1- %)}

In the case of free-space (1, =1), the equation simplifies to
Hy(x,y, ) = (3.116)
v
H)’(xaya - At) + YOVg;%;I:Ez(x + 'g_l,y, {— %I') "‘Ez(x - %’y’ t— %)]

The above equations are the update equations for the y-directed component of a TM,

magnetic field. Similar equations will be formulated next for the x-directed magnetic field

component.

56




/ Ezzi(x,y+dl/2,t)

A/A‘;%(&y-dUZ,t)

Figure 3.10. A Contour for Updating H .

A local coordinate system will be used, with the origin at the center of the

contour. Any point (y',z') within or on the contour C; can be specified by its local

coordinates
y' =y+y z/=z+( where —--A?IS\VS+A7] and ~AZ£SCS+—A2—I

By following the same procedure shown for H, update equation, we can determine

the approximate equation for the H_magnetic field "updates” as
Hy(x,y, ) = (3.117)
{Eey-5.1-9) -Eley+ 5,19}

\4
Hx(x7y7 1= At) + YO Vg:'d Llravs)’l(x y)

In the case of free-space (1 =1), the equation simplifies to
v
Hi(x,y, )~ Hy(x,y,t - AD) + YOE’%[EZ(x, y-L - -E(y+4,1-4] (3.118)

The above equations are the update equations for the x-directed component of a TE,

electric field.
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B. TRANSPARENT GRID TERMINATION IN 2-D

1. 2-D TE, and TM, Grids

The electric and magnetic field update equations have been derived using local
coordinate systems, with origins at the centers of the magnetic and electric contours,
respectively. These equations now need to be "converted” to a global coordinate system,
that is to the grid of equi-distant sampling points in the xy-plane. Since we have either
TE, or TM, 2-D electromagnetic fields there will be TE, and TM, grids as well. Let us
assume thatv our domain is an L by L square. We will assume a uniform grid, that is a
discretization step Al that is not changing with position. The fields are then "sampled”
using a spatial step AIEL/(N-1). The electric and magnetic field sample locations are
"interleaved", as shown below for N=5. The spatial grid edge samples can be, in principle,
either electric field samples or magnetic field samples. We will select electric fields for
spatial edge samples for TE, grids and magnetic fields for TM, grids. The "generic” 2-D

grid below is thus applicable to either TE, or TM, fields.
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Figure 3.11. 2-D Grid

An (N by N) TE, grid has (N)(N) H, magnetic field nodes, (N-2)(N-1) E, electric

field nodes, and (N-1)}(N-2) E, electric field nodes. Similarly, an (N by N) TM, grid has

(N-2)(N-1) E,_ electric field nodes, (N-1)(N-2) H, magnetic field nodes, and (N+1)}N) H,

magnetic field nodes. TE, electric and maghetic field "update" equations can now be

"converted” to electric and magnetic field grid "update" equations by replacing the

variables x, y and t with the grid coordinates of the electric field spatial and temporal

sampling points

x—=iAl i=0,1.N y—jAl,i=0,1.N
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The notation can be simplified by omitting the common Al and At terms, and using
a superscript for the index of the temporal sampling point. The grid equations for

conductive media are obtained from equations (3.62 , 3.65)
11 vo Zo- Al Cagy(is))

o 2Verid &, g (i, ) .
EZ(,)) = oo Zo - Al-Gag (o)) E7(x,y) (3.119)

o 2 Verid Srvan}’(iaj)
Vo 1
Zo;————.‘.‘
gridSravgy(l,J) { n—% L. 1 'I—% L. 1 :|
+ - — | H: *(1,j+5)-H: “(i,j— 3
1+1 vo Zo - Al Gavgy(i,)) ( 2) 2

2Vgrid €, mg(i,])

1- 1 vo ZO -Al- Gavgx(i:j)
. 2 Vgrid E3ravgx(i .]) .
y(1.)) = = -Ep! 3.120
Ey(la.]) 1 Vo ZO . Al . Gavgx(i,j) y (l,_]) ( )
1+ . =
2Verid  &ravgx(i.])

ZO Vo 1
+ - ’ . szi"—,'—szi'*"‘,'
e ZoAlgagp L (TR
2 Vgrid Er, ,avgx(l,_])

H1G,J) ~ H o) = Yooy s (.121)
ravg\4s,

el nl el -l
|:Ex ’ (17.] - -;-) —Ex 2(i>j+ -;': t) +Ey : (1 + %:]) —Ey 2(1 - %7.1)]
The TE, electric and magnetic field grid update equations for non-conductive

media (c=0)are

ENG.) BT G)) + Zoys

0 1 "‘% S | "‘% .1 :‘
L. — Hz =) — Hz — 3' 2

aei N prelys : % 1 nr LN g1
Ey(’:])zEy I(I,J)+Zovg_:'d.;—-Tj)”[Hz 2(1—';',_])—1{7, 2(l+%,_])] (3123)
ravgx\},,
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H2G,) =H;"l(i,j)+Yo%m x (3.124)
BB - B - b B Gk
Finally, the free-space TE, grid equations are —
En(i,j) = EFN(, ) +Zov;% : [HZ—% Gj+h CH G- 5)- (3.125)
E"i.)) ~ EF'(, ) +ZO% : I:H:—%(i ) CH G+ L j)- (3.126)
H;(,)) = (3.127)

el el el el
Hg_l(i:j) + YOVE:—‘, : |:Ex 2(i>j+ %) —Ex Z(i:j— %) +E)’ 2(1 - ';_7.]) —Ey 2(1+-;1_)_:J)]

Dual TM, grid equations for conducting media are

n-i -l
HiG,)=HT'@,)+7Yo v‘; d;———lT_J) . [Ez .5 %) -E; *G,j+ %)] (3.128)
ravgy\*s,

ne: N oyn=lg: : v_O 1 . n_%.l._"—%._l.
H6 =1 )+ Tt [ B e - B - 1| G

_ 1 vo Zo-Oag(is)) Al

1
2Vgrid g, ae(i,)) ‘
Er(i,j)~ e A -E"(i j)+ 3.130
(.]) 1+1 Vo ZO'Gavg(I,J)'Al zZ (J) ( )
Vo 1
ngﬁder,avg(i:j) nmy o1 "1 n3..01 31
Hx *(i,j—3)—Hx *(,j+3)+Hy *(i+3.))—Hy *(—3.))

1 vo Zo-Gagli,))-Al

1+

The TM, electric field grid equation simplifies for non-conductive media

nro plrs v
E1G,)) = EX 0.) + Zoy_ d;::@ x (.131)

ol -t el el
[Hx j= P~ He (G +Hy i +3.)—Hy Pi- é,j)]
Finally, the free-space TMz grid equations are

el -l
H2(,j) = H7'(G, j)+Yo%-[Ez - D-E: G, j+§)] (3.132)
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. 1y v PRI PR -
H36.) = B 6+ Yoty | BTN b= G- ) IR CRES
E1G.))  EFG) + Zog o - (3.134)
n-3 n-1 n—3 . p n—3 . .
l:Hx Z(ivj— ';‘)—Hx 2(i>j+%) +Hy 2(l+%>.])_Hy 2(1_ %:.])jl

Note that TE, electric and magnetic field grid equations in 2-D have the following

general form
E7Y = CExlE;”"+CEﬂVH§Id (3.135)
Ere” = Cgp ES + Ca VH (3.136)
Hz™ = CinH2 + Cria VES + Ciyn VES (3.137)

where C's are constants (real numbers) that depend on the media properties and the

velocity ratio v/v_., , and "del" operator represents the spatial derivative (gradient).
grid sp gr

Similarly, the TM, electric and magnetic field equations can be written as

H7®* = Cyn HM + Crpa VEZ¥ (3.138)
H* = Cppr H + Cpyy VEZH (3.139)
E'¥ = CpiES + CpaVHY + Cn VHI (3.140)

2. 2-D Grid Termination

The grid equations derived previously are valid for all the nodes except for the
nodes on the grid edges. The reason is that a grid edge node for a field component i a

transverse-to-z plane has only one neighbor node instead of four like a node that is not on

the grid edge, as shown below.
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Figure 3.12. Edge Nodes of a 2-D Grid.

An equation for the circulation of the z-directed field component can not be
written for an edge node because a z-directed field component on the edge shown in the
figure above can not be updated using the grid equations discussed so far. Extending the
ideas of transparent grid termination (TGT) and the discrete boundary impulse response
(DBIR) applied for 1-D problems, the update equations for edge nodes can be devised
based upon convolutions of the fields one layer inward and the pre-calculated impulse
responses from the inward layer to the grid edge nodes. An edge field will be expressed as
a superposition of responses, as illustrated in the figure below for a top edge grid node.

(The same applies to other edge nodes as well)
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Figure 3.13. Edge Field as a Superposition of Responses.

The superposition can be also "visualized" using the concept of a multiport . The
nodes on grid edges can be considered as output ports of a linear multi-port. Assuming,
for simplicity, that the grid is square with N edge field nodes on each side, the total
number of output ports will be 4(N-1). The nodes on the layer just mside the grid
’boundary will be considered as input ports of the linear multiport. There will be a total of

4(N-3) input ports. The equivalent multiport is shown below.

input ports -——  output ports (grid boundary)

Figure 3.14. Modeling 2-D Grid Boundary as a Multiport.

64




The input and output fields can be either electric or magnetic fields. Furthérmore,
the input and output fields need not be of the same "kind", that is the input fields could be,
in principle, E-fields and the output fields could be H-fields, or vice versa. However, we
will select the input and output fields to be of the same "kind", that is either all E or all H
fields, such that the impulse responses h_ (t) will be "dimensionless”. The input and
output fields will be H-fields for TE, and E-fields for TM, fields. In this manner, the same
impulse responses h_ (t) can be used for both TE, and TM, grids. The equations will be
derived for TE, fields, that is with electric fields at the grid edges. Dual equations for the
TM, fields can be obtained simply by replacing E's with H's in the TE, equations.

There are four sides of the square grid boundary. The top side has the electric
field E (0,y,t), the bottom side has the electric field E(L,y,t), the left side has the electric
field E(x,0,t), and the right side has the electric field E (x,L,t). The layer just inside will

have the corresponding fields as E (ALy,t), E (L-ALy,t), E(x,ALt), and E (x,L-ALt). The

limits on the values of x and y for the edges are 0 and L (0 <x,y < L), while the limits for
the layer just inside are Al and L-Al (A/ <x,y <L —Al). Using the grid coordintes (i,}) the

fields on the grid boundary will be, starting at the upper left comer (coordinates 0,0) and
using a clockwise reference direction£?(0,)), E;(i, N— 1), E}(N - 1,/),EZ(i,0). These can
be grouped into a "vector” of electric fields on the grid boundary

Eboundary(®) =[E(0,j,9) E.(i,N-1,§) E.N-1,,0) E.G,0,H]7 (3.14D)

where T indicates transposition (the vector is a column vector, but it has been written as a
transpose of a row vector to save space). In an analogous manner an electric field vector

can be formed for the layer just inside the grid boundary
Ejuﬂ_inSide(t) = [Ez(l')j’ t) Ez(ia N_ 27 t) EZ(N“ 27]: t) EZ(ia 1) t)]T (3-142)
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The advantage of the vector arrangement is that we can now use a singlé index
(say index m) to identify a field on the grid boundary and another single index (say index
n) to identify an electric field on the layer just inside the grid boundary. The use of single
indices m and n allows for a direct and compact refefrence to the multiport representation
of the grid termination problem. The electric field on the grid boundary E, ., (t) can be

expressed as a convolution of the electric fields at the layer just mside the grid boundary

Ej msia(t) and a matrix of impulse responses H(t).

E boundary(t) = Hi (t) *F ju.s’t_inside(t) (3 . 143)
where the 4(N-1) by 4(N-3) matrix of impulse responses can be written as
[ ha® ha@® hs® . . haas@®
hoy(® . . . . o oL L. .h2,4(N_3)(t)
H(Y) = (3 144)
i h4(N_1),1(l‘) h4(N_1),2(t) e e e e e h4(N—1),4(N—3)(t) ]

The electric field at a boundary node (identified by a particular value of the index
m) can be written as the product of the m-th row of the impulse response matrix H(t) and

the column vector of the electric fields just inside the boundary (indentified by index n)

Eboundary(m, t) = (3 145)
n=4(N-: n=4(N-3) [*
Zn:;( A hm,n(t) * just_inside(n, t) = Z,,:;( A J.O Ejust_inside(n, T) . hm,n(f - T)d‘t

where the summation is over all the nodes on the layer just inside the boundary. The

discretized forms of the above equations, involving samples of electric fields at t=kAt, are
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the sums of discrete convolutions. Since a discrete convolution is itself a sum, the result
for the boundary nodes will involve double summations (the expression below uses

superscripts for time samples and convolution summation).

n=4(N-3 =k k-
E gounda}y(m) = 2,;:1( ) Zg;o E;;‘sr_inside(n) : h'"s5 (3 146)

The convolution equations express the fields at the edges as weighted sums (the
weighting coefficents are the values of the discrete boundary impulse responses h,, ) of the
time histories of the fields "just inside" the grid. In that respect they are equations of the
same type as the equations for the non-edge grid nodes (equations ?? and ??), except that
they involve, in general, summations with many more terms. However, the impulse
responses h,_ (t) converge to zero relatively fast which effectively reduces the number of
significant terms in the convolution sums. The convolution sums can thus be truncated
such that only a certain number of the most recent values of the electric fields just inside
the boundary are needed (this reduces the number of electric fields that have to be stored
and updated). The discrete boundary impulse responses h, (kAt) need to be determined
(and saved) only once, just like in 1-D, for a selected grid velocity v, =AVAt. The
impulse responses can be stored in a rectangular matrix form. A particularly suitable
matrix form would have 4(N-1) rows, one row per boundary node, and 4(N-3)N,
columns, where N, denotes the “truncated” length of the discrete boundary impulse
responses. This form is suitable because the boundary electric fields can then be
calculated as a product of such a matrix and a columm vector constructed of 4(N-3)

subvectors of length N,. The subvectors represent the N, most recent values of the
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electric field at nodes just inside the boundary. (The choice of N, depends on the desired
amplitude "resolution", with the values over 20 giving very good results for vg,a/vo = JD

, D=2 for two dimensional problems). These subvectors are updated at each time step by
shifting all of their values down (that is "futher into the past”) by one, discarding the last
value, and updating the first subvector element with the most recent field value calculated
via standard grid update equations. The double summations are thus efficiently executed
as matrix-vector multiplications.

The discretized impulse responses h*__ are determined in a manner analogous to
the 1-D case, using the discrete equivalent of the delta function which we will denote as
8t Tt is convinent to use the equivalent multiport to explain the procedure. In order to
determine the discrete boundary impulse response for a particular input port n, all input
ports except the n-th input port are set to zero and delta impulse is applied to the n-th
input port. Recording all the outputs from t=0 to t=N,At provides us with 4N discrete

boundary impulses of duration N,.
E}y imsice(n) = 8* (3.147)

Bty mia®) =0 for p=1.4N-3) and p=n (3.148)

The process is repeated 4(N-3) times (since there are 4(N-3) input ports) and the

results are stored in a 4(N-1) by 4(N-3)N, matrix. This matrix is then used to implement
the transparent grid termination via the matrix multiplication by the 4(N-3)N, column
vector of the time-histories of the fields just inside the boundary. Depending on the values
of N, and N, there will be input nodes that are sufficiently far from an output node such

that the time it takes for an input impulse to propagate to the ouput port exceeds N,. In

68




such a case, the contribution of such an input node to the output node is known to be zero
in advance. This may be used to reduce the number of operations in a TGT
implementation. The process of obtaining the 2-D discrete boundary impulse responses is
carried out on a "large" grid whose size should be at least (N+N, by N+N,), or
equivalently, the distance from the TGT boundary to the boundary of the "large" grid
should be at least N AlV2. The termination of this "larger" grid (in typical applications
N>>N, and the "larger" grid would be only incrementaly larger) is immaterial, since the
reflections off its boundary do not arrive at the output nodes (where they would have
corrupted the impulse responses) before the time-stepping has been terminated. When
calculating the discrete boundary impulse responses (DBIR), the nodes interior to the
TGT boundary need not be updated since all the nodes on the layer just inside the TGT
boundary (the input ports) are zero for t>0 (at t=0 only one node on the layer just inside
the TGT boundary has the value of 1). The DBIR calculations thus require updates only
for the nodes between the TGT boundary and the large grid boundary which can result in
significant computational time savings if N>>N,. The update equations used for the
region between the "inner" (TGT) and the outer boundaries are the free space equations,
since this region is assumed to be free space. (The medium between the two boundaries
can be any homogenous medium extending to mfinity, but the most practical case is the

free space.)
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"large" grid boundary

no fields updates inside TGT

Figure 3.15. 2-D Grid for Calculation of TGT Boundary Impulse Responses.

The shape of the discrete boundary impulse respomse h, (t) determined as
described in this section will depend on the relative positions of the observation (output,
index m) and the source (input, index n) nodes. In general, the more the indices differ

from each other the following will be noticed
e the impulse response will start later;

¢ the maximum value of the impulse response will be smaller;

e the impulse response will be more "spread out" in time.

To illustrate these, three sample impulse responses are shown. The observation
point (output port) is the same for all three responses, and is positioned in the center of
one side of the TGT boundary. The three discrete boundary impulse responses are the

responses to the delta function applied to
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® a source (input node) immediatelly below the output node;

® an input node 5 nodes to the side of the source node immediately below the
output node;

® an input node 10 nodes to the side of the source node immediately below the
output node.

The velocity ratio v/v,,, for the DBIR calculations was set to 1//2 . The plotting
program interpolates linearly between the sampling points kAt. The impulse response

were truncated to a duration of N,=40. Because of the vast change in scale (the largest
value of DBIR for a source node just below is 1/2 while the largest DBIR value for a
source 5 nodes to the side is about 25 times smaller, and the largest DBIR value for a
source node 10 nodes to the side is about 1,000 times smaller) the impulse responses are
shown individually. The rapid decrease of the impulse response peak values with distance
offers the possibility to implement TGT using "local" equations instead of using "global”
convolutions. An approximate "local" TGT implementation would involve only a few
input nodes nearest to an output node, while a "global" TGT implementation involves all
input nodes (all the nodes on the layer just inside TGT). The loss of accuracy due to
"Jocalization" is not excessive, because of the rapid reduction of the maxima of h,(t) as
the difference between m and n increases. Finally, the DBIR shown are equally applicable

to TE, and TM, grids.
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Figure 3.16. DBIR For A Source Node Directly Below An Observation Node.

72




0.02

0.015

.
Eog
0.01 !
O
A
0.005 fiid
I
LA
0 R O T A I e N .
RV A VS et
b
P
14
-0.005 i
1
i

-0.01 |

-0.015

-0.02
0 10 20 30 40

Figure 3.17a. DBIR For A Source Node 5 Nodes to the Side.
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Figure 3.17b. DBIR For A Source Node 10 Nodes to the Side

C. 2-D TGT RESULTS

In order to test the TGT we will use the TM, grid model shown in Figure 3.11.
Therefore, the nodes on the grid edges are E-field nodes. Note that the results would be
the same for TE, fields, with H-fields node on the edges of the grid. The source is a
unit-amplitude delta impulse of E, electric field applied at the center node. The impulse
source at the center of the grid gives rise to a cylindrical wave that propagates radially
away from the grid's center. The cylindrical wave is not perfect, as its is "distorted" by the
grid and develops a "wake" as it propagates through the grid. The cylindrical wave is

incident to the TGT boundary. If the TGT were perfect, the total power within the grid

would be the same as the total power within the same region for an infinite grid.
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However, since the TGT is not perfect (because of truncaton of impulse responseé) there

will be some increase in the total power that comes from the "reflection” off TGT. A

measure of TGT performance in 2-D will be the relative increase in the total power, that is

the ratio of the power increase for the TGT and the power for an infmite grid. This ratio

is a function of time and, since it is nérmally very small it is best represented in dB
QOrer=10- logm(fﬁf‘j}fﬁz)

We have denoted this ratio as Q_; since it expresses the TGT "quality”. We will
select a square grid with 21 nodes on each side for our 2-D TGT test. The impulse
responses will be truncated such that the TGT performance can be observed for various
selected impulse response durations. Note that the power within the grid will be the same

for the case of an infinite grid and the TGT until the outward-propagating cylindrical wave

reaches the TGT. All results will be shown for the case
Vegrid = ﬁ Vo
The grid power and the TGT quality factor Q. will be plotted as functions of

time, with the coordinate origin (t=0) reffering to the time when the outgoing cylindrical
wave first reaches the TGT.

First, we truncate the impulse responses such that their duration is t,= 10At. The
power within the grid is plotted as well as the power difference and the relative power
difference in dB (the Q). The plot of power vs time shows the decrease in power
towards O as the cylindrical wave leaves the grid. If the grid and the TGT were ideal, the

power will be constant until the wave reaches the grid nodes at the centers of each side
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(the outgoing wave reaches these nodes first since they are closest to the gridA center
where the wave has originated). The power will then decrease towards zero as more and
more of the wave leaves the grid. Finally, the wave would reach the four comners of the
grid (these nodes are the farthest from the grid center and the wave gets to them last) and
leave the grid alltogether, the power within the grid being zero from then on. However,
since neither the grid nor the TGT are perfect, there will 1= some small "residual” energy
within the grid at all times, converging to zero as time progesses. The relative power
difference in db (the Q) curve shows that, for t<t, the power "reflected" off the TGT is
about 150 dB below the power that the same domain (within the TGT boundary) would
have for an infinite grid. For t > t, the power "reflected" off the TGT is more that 20 dB
below the power of an infinite grid. This means that the effects of the TGT are about two
orders of magnitude smaller than those of the grid "imperfection” for t > t, and about 15
orders of magnitude smaller for t <t,. The plots for t,=20, t,=30, and t,=40 confirm the
above as well. Note that increasing the duration of the impulse response also reduces the
“reflections” off TGT for t>t,. Also, note that for a grid of N nodes on the side the
duration of impulse responses greater than 2N allows for any node on the layer just inside
TGT to contribute at least one value to any of the nodes on the TGT (because there are

2N nodes from one comer of the TGT to the opposite cormer).
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Figure 3.18. Residual Power for t, =3At.
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Residual Power Difference for TGT & infinite grid
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Figure 3.19. Residual Power Difference Between TGT and Infinte Boundary for t,=3At.
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Figure 3.20. Residual Power for t,=10At.

79




Residual Power Difference for TGT & Infinite Boundary
0.01 T T
8
f =4
[
2
5 0.005F b
g
2
=
a
0 Lot pos e
0] 50 100 150
Power Difference:Log Scale '
0 T T
8
5 S0 ’
(2
S
8 -100} .
)
2 -150} -
o
_200 1 1
0 50 100 150
Sample Times Since Touching TGT grid

Figure 3.21. Residual Power Difference Between TGT and Infinte Boundary for t,=10At.
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Figure 3.22. Residual Power for t,=20At.
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Figure 3.23. Residual Power Difference Between TGT and Infinte Boundary for t,=20At.
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Figure 3.24. Residual Power for t,=30At.
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Figure 3.25. Residual Power Difference Between TGT and Infinte Boundary for t,=30At.
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Figure 3.26. Residual Power for t,=40At.
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Figure 3.27. Residual Power Difference Between TGT and Infinte Boundary for t,=40At.

36




Linear Scale
0.1

°"-.
0.05
et e - TP
0 R N ST LA TSy b ................. £
0 10 20 30 40
Log Scale (dB)
-10—o—
_20 R e ST T e
[l o RN
30, "
-40
0 10 20 30

Duration of impulse Response
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Figure 3.30. Residual Power for t,=40At, using Vr = -2_1-,/'2:- .
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Figure 3.31. Residual Power Difference Between TGT and Infinte Boundary for t,=40At,
using Vr = ﬁ )
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IV. ANALYSIS OF TGT FOR 3-D FD-TD

A. FD-TD FORMULATION IN 3-D

1. FD-TD Equations in 3-D

The incident and the scattered electromagnetic fields and the media parameters in
3-D problems vary with three spatial coordinates(x,y,z) , so the electric and magnetic
fields will be functions of the spatial coordinates x, y, z and time t. A 3-D electric field

vector E can be represented in terms of its othogonal components as shown below

A.Z

Y.
Y
«

Figure 4.1. Electric Field Vector Components.

> —> -
E(x,y,z,0) = Ex(x,y,z,)) X +Ey(x,y,2,0) ¥ +E:(X,,2,0) 2 4.1
The direction of propagation is indicated by the direction of the velocity of

propagation vector 7. Similarly, for the magnetic field vector H we can write
—>
Hx,y,2,0) = He(6,, 2,0 % +Hy(,,2,0 ¥ +Hx,3,2,1) 2 4.2)

The electric and magnetic fields are solutions of Maxwell's equations
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— = 5 - > s —_— —>
o, EC.yz D)o dle =—5;{ [, 8 -dsg} =—5{ [, w98,z t)ociS'E} (4.3)
—_— >
§o Heyz,0) e dly= (4.4)
—a—{ﬂ e(x,y,2)E(x,y,z t)O-dTH)} +H o(x,y,2)E(x,y,z t;ocis';
ot{dsy 777 St SH 7 S

The second curl equation does not have the source current term, since it has been
assumed that there were no source currents in the domain of interest. The contours of
integration for the electric and the magnetic field circulations are, in general, different and
will thus labeled C, for an electric field contour and C, for a magnetic field contour.
Similarly, the surfaces associated with the contours will be labeled S for the magnetic flux
and S, for the electric flux. In order to determine the discretized forms of Maxwell's curl

‘equations in the integral form for the 3-D, we will use 3-D Yee electric and magnoetic cells

[Ref 1]. One such cell is shown below.
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Figure 4.2. Positions of Field Components in a Yee's Electric Cell.

The electric field contours C and the magnetic field contours C,, are square (Al by

Al) contours. The linked C; and C, contours are all orthogonal to each other, evoking the
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idea of electric and magnetic field linkage in all directions. Based on Yee's ceils, the

electric and magnetic contours and their associated surfaces will be used to discretize

Maxwell's curl equations.
2. Derivation of Magnetic F_‘ield Update Equations

We need to derive the update equations for each of the three components of
magnetic field vector H. A contour C; for deriving the update equation for H(xy,zt) is
shown below. This contour can be thought of as the front face of the Yee cell (cube) from
the previous figure. Note that the coordinates of the four electric field components are

expressed in terms of the coordinates of the contour's center.

z "_ .....
A Ey(x.yz+dz/2,9)
A A
Ez(x,y-dy/2,z,t) zg , Ez(x,y+dy/2,zt)
(x.y.2.t
i y
- Ey(x.y,z-dz/2.t)

Figure 4.3. A Contour for Updating H,_

We will assume a uniform grid with Ax=Ay=Az=Al A local coordinate system
(¢, v, c) will be established, with the origin at the center of the contour. Any point (y,2')

within or on the contour C, can be specified by its local coordinates § and {

y =y+y z/ =z+¢ where —A?Isq;s-;-%l, _._é_{ggg_,_ézl
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The local coordinates will be used in the evaluation of the line and surface iﬁtegrals

that constitute the integral forms of Maxwell's equations. The circulation of the electric
field around the electric field contour C, , assuming counter-clockwise reference direction

_._)
such that the normal to the surface S; is in the direction of the magnetic field Hx(x,y,z,7),

can be evaluated approximately, assuming that the electric fields are constant over their
respective countour's sides of length Al
—>
§. [E6 2 0% + B, 2,07 |edle = 4.5)

[Ey(x,y,z =.H-E,(x, y,4+ t) +E; (x,y+7 z,0)—E.(x,y— 2 z t):| Al

The magnetic flux through the surface S; (the right-hand side of the first curl equation)

can be calculated using the local coordinates
5 o
[, we.y OH( Y707 s dsg = (4.6)
E
+4 e - -
I_g J_g uey+ W,z +QHx(x,y + W,z +6,0) X & X dydg
2 2

There are infinitely many ways to model the variation of the magnetic flux density
(with respect to local coordinates  and () within the contour. We first need to postulate
a certain variation of the magnetic field with y and { such that the integral can be
evaluated over S,. The simplest model assumes that the contour width Al is small enough

such that the magnetic field H(x,y+y,z+(,t) within the contour may be assumed constant

and equal to the value at the contour's center H(x,y,zt).
H(e,y+y,z+¢,) = Hx(x,y,2,1) (4.7)

This is equivalent to using a piece-wise constant (or 2-D "pulse” expansion)

approximation of the actual magnetic field variation with respect to y and z. Note that the
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above assumption allows that, although the magnetic field is constant within a contour, it

can change from one contour to an other. This yields an approximate expression for the

for the magnetic flux

— A . A
I, w6y HH Y7 02 o dsp m Heleoy ) [ 5 [ wwy+ vz +9dyds (4.8)
2 2

The integral of the permeability p(xy+y,z+() can be re-written in the following manner

o u(x y+y,z+ g)dwdc] (4.9)

3 123wy ey = a1y [ o

The term in the brackets is recognized as the permeability p,, averaged in the y

and z-directions within the contour C; (which is in a x = const plane)

Havgr (X, Y, 2) = u u(x,y+w,2+cz)dwdcs (4.10)

(Al)

The approximate expression for the magnetic flux through S; can now be written using the

average permeability as
I N VRV AP g e 2
[l w6y Y, 2 DX @ dsp = (A enge( 3, 3,58 (411)
Again, this approximate expression resulted from the piece-wise constant
approximation of the magnetic field with respect to y and z-coordinates. The main
advantage of the piece-wise constant expansion employed above is its simplicity. The first

curl equation of Maxwell can now be replaced by an approximate equation
E,(x,y,z— t) Ey(x y,z+——t)+E (x, y+ z H—-E(x,y— ?,z D= (4.12)
2 (a3, DH 50,7, o
which can be simp]jﬁed (because of media stationarity) to
By, 2= 50 By, ya+Elp+Eey+S Lo)-Edey-Shans (413)
at{H,{(x,y,z, H}-Al- uavgx(x,y,z)
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This equation can also be re-written as

"aa_t{Hx(x,y,,Z, t)} = (4_14)
-1 AL, Al Al ] al
Al Lavgx(x, y,2) [Ey(x,y,z 2° D-Eyxy,z+ 2 D HE(xy+ 5% - E:(x,y 2% )

The time derivative operator in the above equation is typically replaced by the
finite difference approximation [Ref 5]. However, just like in 1-D and 2-D, we present an
alternate approach, such that the approximation of the field time variation is shown to be
analogous to the approximations already introduced for the field spatial variation. The
above equation is integrated with respect to time to get an approximate equation for the

magnetic field at the present time t

~ -1
Hx(x7y3 Z, t) ~ Al - uavgx(x,y,z) x (4‘15)

I:_“; E,(x,y,z— %, T)dt — J.; E,(x,y,z+ %, T)dt +I; E.(x,y+ %,z, T)dt - _[; E.(x,y- %,z, ‘c)d'c]

A similar integral equation can be written for the magnetic field at the same spatial

location but at an earlier time t-At

Hx(x,y,z,t—At) =~ mx (4.16)

t—At At ~At 1=Ar
[“.0 Ey(xay,z—ézl-"r)dr_“‘o Ey(x)y9z+%l.»1)dt+jo Ez(’ﬁ)"*‘ %,Z,T)d‘r—.l.o Ez(x’y_%vz>‘r)dt]
Subtracting the two equations we get

Hi(x,y,2,0) = He(x,y,{— A) — mx (4.17)

t 7 t 13
I:L_N Ey(x,y,z— ﬁ‘zl,r)d‘c - L_N Eyx,y,z+ -Ai'—,r)d'r + L_N E:(x,y+ %—I,z, t)dr—jt_m E:.(x,y- %,z, T)d’t:l

The integrals on the right-hand side can not be evaluated exactly, because the -

exact temporal variation of the electric fields within the At interval prior to t is generally

not known (just like the Spatial integral for the magnetic flux could not have been
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evaluated exactly because the exact variation of the magnetic field within the contour was
not known). However, the integrals can be evaluated approximately by assuming a certain
variation of the electric field with the temporal variable 1. The simplest approach,
consistent with the assumptions made for the field spatial variation, would be to assume

that the interval At is small enough such that the electric field can be assumed

approximately constant within At and equal to the value at the center of the time interval

(t-At, t)
Ey(x,y,z—%r) zEy(x,y,z—iz‘l,t——Az’—) for t—At<t<t (4.18)
Ey(x,y,z+§,'c)zEy(x,y,z+92'-,t— 3‘21) for t-At<t<t (4.19)
E.(,y+2,2,1) ~Ex,y+%,z,t-5) for t-Ar<t<t (4.20)
| E.(xy-4, 1)~ Ex,y-%,2,t-5) for t-At<t<t (4.21)

The above represents a piece-wise constant approximation of the electric field
variation with respect to the temporal variable t. The approximate expression for the
magnetic field at location (x,y,z) and at the time t now becomes

H(c,y, )~ Hy(,3, 1= A = u«iz Tk (4.22)

Al N A
[E)’(xsyaz - %7 r- %t') - Ey(xa)’,z + 2> t- %) +Ez(x>y+ 2725 - %) —Ez(x:y - 7% - %)]
The above equation can be written in a somewhat different form, using the identity

€
JeBo 1 1 11 1 _, 11 _yyl (43

__l_L—__- = =
Bolr ™ 2o JHo JHo Br JWoEo [Ho Pr T Zol
€o

1_
m
where the free space velocity of propagation is denoted v,, the intrinsic impedance of free
space is denoted Z, (Zo ~377€0), and , denotes relative permittivity. Introducing the
grid "propagation" velocity

Vg,-,'d = —A—t (424)
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we can write the approximate "update" equation for the magnetic field as

~ VI Vo 1
Hi(x,y,2,0) ® Hx(x,y,2,t = Af) = Yo (vgn. d) 7.0 (4.25)
[E)'(xayaz - %7 t— .Azt—) _Ey(xayaz + %a I- %{) +Ez(x7y + %,Z, t- %{) —E}’(xoy - %:Za - %i]
The equation simplifies for the case of non-magnetic media (p,=1)
H.(x,y,z,0) = H:(x,y,z,t - Af) = Yo (VZ’%;) X (4.26)

[Eye,y, 2~ 2,1~ -y, 2+ 8 - )+ Ee,y + &2, t - B - E(x,y - £, 2,1~ )|

The update equations for the components H(xy,zt) and H, (xy,zt) can be
derived in the same manner. Since the only differences would be due to different contour
and surface orientations, the update equations for the components H(x,y,zt) and H,
(x,y,zt) can be obtained from the update equation for H (xy,z) by cyclic permitation of

indices. The contour for updating H(x,y,z,t) is shown below

b Zmm— Az
Ex(x,y,z+dz/2.t)
A

Ez(x+dx/2,y,z,t) Ez(x-dI/2,y,z.t)

Hy(x,y.z,t)

X ;
£ 7
Ex(x,y,z-dV2.t)

Figure 4.4. A Contour for Updating H,.

Following the same procedure shown for updating H_ component, or simply using

the cyclic permutation of indices we get the update equation for H(x,y,zt)
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Y 1
o0 Byt 18 = To{5hls) sy

[Ez(x—- %,y,z, t— %)-Ez(x+ %,y,z,t— %) +Ex(x,y-,z+%,t— —;‘1) —E.(x,y,

Finally, the contour for updating H, (x,y,z,t) is shown below

z |
T Ey(x-dl/2,y,zt)
Ex(x,y-dl/2,z.t)
/ Hz(x.y.z.) |
L Ex(x,y+dl/2,2t)
Ey(x+dV2.y,zt)

Figure 4.5. A Contour for Updating H..

The update equation for H(x,y,zt) is

\4
I G e e e

(4.27)

z-4 -9

................................ >

(4.28)

[Ex(x)y’— %,Z,t— %{) _Ex(xsy+ézl—>z:t— 'Azt—) +Ey(x+%1‘:J’>Z7t‘%)_Ey(x_ %:y:z:t_ %{)]

In most cases the media will be non-magnetic, in which case all relative

permittivity averages will be equal to 1, and the update equations will simplify accordingly.

3. Derivation of Electric Field Update Equations

We will start with the Maxwell's curl equation for the circulation of the magnetic

field
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> 2 9 > i
o, Heix,3,2 07 o dly= -é;{ I, 66,0, 9)| Exe 350 % +B@ 507 |o dm}+(4.29)

ﬂs,, o(x,y, z)[Ex(x, Y, t)? +Ey(x,y, t)—j;')] ° ;1:;

The second term on the right-hand-side (the conduction current) is obviously
going to cause the update equations for the electric field to be more compluicated than the
magnetic field update equations. The discrete equivalent of the magnetic field circulation
needs to be determined for three sample contours a contour in a plane pafa]lel to the
yz-coordinate plane, a contour in a plane parallel to xz-coordinate plane, and a contour in
a plane parallel to the xy-plane. The first contour provides an update equation for the
x-directed component of the electric field, the second contour provides an update equation
for the y-directed component of the electric field, and the third contour provides an update
for the z-directed component of the electric field. Again, 1t is sufficient to derive the
update equation for one electric field component only (say the x-component) since the

other equations can be obtained by a simple cyclic permutation of indices.

: | |
Hz(x,y-dy/2,z,t) / Ha(x,y+dy/2.2,0)
Ex(x.y,z,t)

Figure 4.6. A Contour for Updating E .
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A local coordinate system (y, ) will be used, with the origin at the center of the contour.
Any point (y',Z') within or on the contour C,;(or, equivalently, any point on the surface S))

can be specified by its local coordinates

Yy =y+y z/=z+¢ where —%—lﬁgs+%l,and ~é2£S\u$+éz-l

The circulation of the magnetic field around C,; , assuming counter-clockwise

reference direction such that the normal to the surface S is in the direction of the electric

ﬁeld Ex(x,y, Z,‘ f), iS approximately
§ l H (x’ V/ Z/ t) +H (x’ V/ Z/ l‘) z I. dly ~ (4 30)
Cy y 2/ 2% > )’ z 2 94 .

|:H_V(x:yaz - %1'7 I) _Hy(xryaz + A?Ia t) +Hz(x>y + %729 t) —Hz(x’y_ %927 t):l -Al
The electric flux through the surface S, can only be evaluated approximately, since the

exact way that the electric flux density
D.(x,y,z,0) =e(x,y,2)Ex(x,y,2,1) (4.31)

varies with y and z is not known a priori. First we re-write the flux integrals
JL e(x’,y 2/, DE(X",y,2/,))x e dsy= (4.32)
H

o N
f; f& 806,y + W2+ QEx(5,y + Y, 2+, ) X o ¥ dyds
2 2

] 5, 06y ZNE Y, 2, DX e dog = (4.33)
I ﬁ I fg 6y +V, 2+ QEx(%,y + U,z +G,) % » X dyds '
2
Next, we assume that the contour side Al is small enough such that the electric
field E(x,y+y,z+(,t) within the contour may be assumed constant and equal to the value at
the contour's center E(x,y,z ). This assumption yields approximate expressions for the

flux integrals

ﬁs £06Y + W, 2+ QEx(0y + W, 2+ G )X (4.34)
H

- 4 44
edsy~E(x,y,2,0) - IZ _E; e(x,y + v,z +g)dydc
2 2
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ﬂSH o(x,y+V,z+Q)E«(x,y+y,z+g, t)_)? (4.35)
OZH = Ey(x,y,2,1) - J‘:g jﬁg o(x,y+vy,z+c)dydg
or, using the permittivity and the conductivity averaged in the y and z-directions
J].SH e,y + W,z +QEx(x,y+y,z+¢, t)? . ZH ~ (M) - Ex(%,,2, 1) - €mge(X, Y, 2) (4.36)
[fSH o(x,y+ v,z +Q)Ex(x,y + v,z +g, HY e ZH ~ (AD? -Ex(x,3,2,1) ~Cangs(%,,2) (4.37)

The second curl equation of Maxwell can now be replaced by an approximate equation

[H)’(xayaz - %) _-Hy(x:yaz + %) +H2(xa}’+ %I.>z> t) -'Hz(x:y— %l-a zZ, t)] -Al 2(438)

2 {6 avge5, 7, DBy (5.3, DJAD"} + (8D - Congs®3,2) - B3, 1)

The approximate curl equation can be re-written as

0
2{E(x,,2,0} (4.39)
1 r Al Al A Al
A tome2) | Hy(x, 2~ 5, 0) —Hy(x, 3,2+ 5, 0) +Hx,y+7,2,0) - HAx,y - 5,2, t)]
s Gm’gx(xay’ Z)
- F.(x,,2,{
€ avgx(X, Y, 2) ®.5.20

The above equation is integrated with respect to time to get an approximate equation for

the electric field at the present time t

N 1
E.(x,y,z,0) ~ A ey D) x (4.40)

J-z H,(x,y,z— %’-, T)dt - I; Hy(x,y,z+ %, T)dt +j; H.(x,y+ iz‘l,z, T)dt —r H.(x,y- %’-,z, T)dt
0 0

Cavgx(X,¥,2) [t
€ avgx (X, , 2) I o x5y, 2,0k

Similar equation can be written for the electric field at the same spatial location but

at an earlier time t-At

Ex(x,y,z,t—Af) = m X (441)

1—-At Al 1-At Al 1-At Al —-Ar Al
[0 Bz~ Loode= [ Btz + oo [ Bty + Bz, 0- [T Hotr y— 22,00

_SapX,y,2)

J-I—AIE
Eavgx(x,,2) J0 .y, 2, e
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Subtracting the two equations we get

E.(x,y,2,0) ~ Ex(x,y,2,t - Af) = m x (4.42)
avgx\“>J)»

t t t
[ . H,(x,y,z— %, T)dt - L_AI H,(x,y,z+ -Aé’—, T)dt +L_N H.(x,y+ %,z, T)dt - IHz(x,y— %,z, T)d‘t:l

Camgx(X,1,2) pr
Emgx(X, Y, 2) -[ At E.(x,y,z,1)dt

Assuming that the interval At is small enough such that the magnetic fields can be

assumed approximately constant within At and equal to the value at the center of the time

interval At
Hy(x,y,z+ 210~ Ho(x,y,z+ 5,1 -5) for t-At<1<t (4.43)
Hy(x,y,z- 210~ Hyx,y,z-5,1-5) for t-Bt<1<t (4.44)
Hz(x,y+ ,2,T) = H (x,y — zt——~) for (—At<t<t (4.45)
H (x,y- zr) H.(x,y - —zt D) for t-At<t<t (4.46)
we get
E.(x,y,z,) = Ex(x,y,z,t— Af) + At X (4.47)

Al- savgx(X,y, Z)
[Hy(x>y,z— y 2) Hy(x y,Z+— - 2)+Hz(x,y+%1',zgt—%)_Hz(x7y_%7zat_ %)]

_Sap®,0)
8avgx(x,y, z) Jn E.(x,y,z,7)dt
The last integral term can be expressed in different form as shown below

ngx(xa}’, Z) 1

Sap(,) 1 [t oy Seplond) o
At savgx(x,ygz) At t_NEX(x:yaz:T)dT— avgx(xygz) xavg(Ar)(x:y,Z>t) (448)

The above equation can be written in more compact manner by using the identity
o
1 _ 11 _JBo 1 1 1 [mo1 VoZos (4.49)

8_808’_‘/11_0‘/—5(;‘/58’—‘/% €0 £

where the free space velocity of propagation is denoted v,, the intrinsic impedance of free

space is denoted Z, (Zo ~ 377Q)) and €_denotes relative permittivity. Introducing the grid
"propagation” velocity
Vgrid = %’5 (450)
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we can write the approximate equation for the electric field "updates” as

1
®7,2)

[Hy(xa}’:z_ %:t- %_I) _HJ’(xay:Z+%= - %) +Hz(x;y+%,2,l‘—-At)—Hz(x,y— %I‘,Z,t‘— %‘1‘)]

Ex(x,3,%,7) = Ex(®,3,2,7) +Zoy = - (4.51)

v 1
Zoy>
grid Sr,ang(xaya

=N Al - G ayx (X, ¥, 2)Ex ave(an) (X, ¥, 2, )

The average of the electric field between t-At and t, denoted E, ., can not be
calculated exactly because the exact temporal variation of the electric field within the At
interval is not known a priori. However, assuming a linear variation within At interval, the

temporal average of the field is the average of the field values at t-At and t
Ex(x:.%Z, Ui At) +Ex(x>y: Z, t)

Ex,a‘vg(At)(x:y: Z, t) & D) (452)
Substituting the time-average E ., (x,y,t) into the update equation we get
E(%,9,2,0) % Ex(6,9,2, 1~ Af) +Zo5-2 1 (4.53)

Verid Sf,avgx(x,}’a Z) 8
[Hyepz=5,1= ) ~Hyyx+5, 1= )+ Hioy + §.2,0- M) - Holxy - §.5,0- ) ]

Vo 1

_7z Ex(x,y,z,t— A+ E.(x,y,2,7)
0 vgﬁd Sr,avgx(x,y,

2

Z) -Al- cang(xa-J’,z) )

which give the update equation for the x-component of the electric field as
1 vo ZO -Al- O'anx(x’J’a Z)

B Evgrid Sr,m’gx(xsya Z)
1 Vo ZO Al c“"gx(xaya Z)

2 vg"id 8r,avgx(xsy [ Z)

Ex(x>y7 z, t) r

Ey(x,y,z,t—Af) + (4.54)
I+

7 Vo 1
ngﬁd SV-WXX(x’y: Z)
1 vo Zo-Al-Cmpl(x,y,2)
2 Vgrid 5r.a‘zx(x:y, Z)

1+

[Hyey,z- 21— )~ Hy ey, x+ &t - Y+ Hox,y + 2, 2,1~ A) - Ho(x,y- £,2,1- &) |

The equation simplifies greatly for the case of non-conductive media (c=0)
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Ex(x,}’,za t) “Ex(X,y,Z, t"—At) +Zov;:-dsravgx%x y Z) X (455)

[Hy(xJaZ" ‘Ail_: 1= %) _H)’(xayrz +%I-> I~ %) +H2(x7y+ %l,z’ t—At) _Hz(x,y_ %aza = %):I
In the case of free-space (¢=1), the equation simplifies farther

Ex(x,y,z,0) = Ex(x,y,2,t — Af) +Z°'17§:—),_-d x (4.56)
[Hy(xJ’aZ_ %9 I- %) "Hy(x’}@x'*' ézl-’ - %) +HZ(x>y+ %,Z: t_At) _Hz(xsy - A?Iazat— %t_):l

The update equations for the other two electric field components E (x,y,zt) and E,
(x,y,z1) can be derived in the same manner. Since the only differences are in the contour

and surface orientation, the update equations for E(xy,zt) and E, (xy,zt) can be

determined by a simple cyclic permutation of indices, as shown on the next page. The

contour for updating E, (x,y,zt) is shown below.

Hx(x,y,z+dz/2.1) :
' A
Hz(x+dx/2,y,z.t) Hz(x-d1/2,y,z1)
Ey(x,y,z,t)
X ;
< € :
y

Hx(x,y,z-dl/2.t)

Figure 4.7. A Contour for Updatmg E .

Following the same procedure as shown for the E (x,y,z,t) update equation, or by

a simple cyclic permutation of indices we obtain
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1 vo Zo-Al-GCavgy(x,),2)
T2V GG, Ey(x,y,2,1—Ad) + 4.57
X, ¥,z t— .
1 Vo Zo .Al'ca"g}’(xa.y)Z) g y ( )
2 Vgrid Sr,avgy(x>y,z)

Ey(x,y, z, t) i

1+

Zo Vo 1

Vgrid €, avgy (X, ¥, 2)
1 Vo Zo - Al -G agy(x,y,2)
2Vgrid  Erag(X,V,2)

1+

[Hz(x— ‘Az‘l,y,Z,t—Af)—Hz(x"'%l',y,zat_ %) +H1(x:yaz+%7t_ %)—Hx(x:yaz_%lat_%)]

The equation simplifies greatly for the case of non-conductive media (6=0)

Ey(v.9,50 % Ey(5,3,7, 1~ A) + Zog o amgygx Tk (4.58)

[Hz(x_ %:y:zz - At) ~Hz(x+ ézl_:yaza t- %t_) +Hx(x>y:z+%l',t— %{)—Hx(xayaz- %-I: - %i)]
In the case of free-space (¢=1), the equation simplifies further

E,(x,,2,0) = Ey(x,y,2,1— Af) +Zo-%x (4.59)
[Hl(x_ %7}’727 t- At) _Hz(x+ %,}GZ: I- %) +H1(x7y’z+é2£> - é21) ‘Hx(xaysz— ézl-p - %—1)]

The contour for updating E,(x,y,zt) is shown below.

A
T Hy(x-dV2.y.z.t)
Hx(x,y-dl2,zt) o
/ Ez(x.y,z.t) :
Hx(x,y+dl/2,zt)
’ ............ —'
X Hy(x+dl/2,y,zt)

Figure 4.8. A Contour for Updating E,
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Following the same procedure as shown for the E (x,y,zt) update equation, or by

a simple cyclic permutation of indices we obtain
1— 1 vo Zo Al GCag(x,y,2)

2vgrid Sr,anZ(xJJ)
E t ~ Ez IR LY 2 t"_ At 4.
z(xayaza ) 1 N 1 Vo ZO 'Al'o-avgz(x,y’z) (x y z ) + ( 60)

2Vgrid  Eravg(X,),Z2)

Vo 1
T
1 vo Zo-Al-Cay(x,y,2)
2Vgrid sr,mgz(xay, z)

[Hi(r,y-2,z,t- D) - Hix,y + 5.2~ &Y+ Hy(x+ 53,2t - ) —Hy(x- 4 y,z,t-%]

1+

The equation simplifies greatly for the case of non-conductive media (6=0)

Er(3,20) w ExCe 33,1~ AD) + Zog oyl (4.61)

[Hx(x,y_ %,Z, - %) _Hx(x>y+%az’ I— %{) +Hy(x'+%ayaza - -Az—t) —H}’(x- %{Ly)za - -Azl—):l
In the case of free-space (¢=1), the equation simplifies further
E.(x,y,z,0) = E,(x,y,z,t— Af) + Zo %x 4.62)

[:Hx(xay-' %l'azst- “1;_1) 'Hx(xd""%az’t— %) +Hy(x+%1>}’>zat_ %t_) _Hy(x_ %,}’:23 t-'Azl)]

B. TRANSPARENT GRID TERMINATION IN 3-D

1. 3-D Grid

The electric and magnetic field update equations have been derived using local
coordinate systems, with origins at the centers of the magnetic and electric contours,
respectively. These equations now need to be "converted” to a global coordinate system,
that is to a 3-D grid of equi-distant sampling points. We assume that our domain is an L

by L by L cube discretized using a uniform grid, that is that the discretization step AFFL/N
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is not changing with position. The electric and magnetic field sampling points (nodes) are
"interleaved", that is offset by AU/2 from each other in X, y, and z-directions. The electric
field components are located along the sides of "electric” cells while the magnetic field

components are located along the sides of "magnetic” cells.

S VS /S
a4 /
S /

\ 4

AN
NN NN

Figure 4.9. 3-D Grid, Electric Cells.
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The electric cells are the cells of constant € and o, while the magnetic cells Are the
cells of constant p. The permitivity and conductivity can vary from one electric cell to
another in arbitrary manner. The permeabilty can vary from one magnetic cell to another in
an arbitrary manner as well. The electric cells are shifted by Al/2 in all three coordinate
directions with respect to corresponding magnetic cells. The placement of field
components along the cell's sides automatically provides for the continuity of tangential
components of electric fiels across media interfaces, while the spatial shift of electric vs.
magnetic cells provides for electric and magnetic field linkage (coupling). Domain
boundaries can coincide with either the faces of electric cells or the faces of magnetic cells,
but not both (because of the Al/2 spatial shift between the two). Although, in principle,
either electric or magnetic cells can be alligned with the grid boundaris, we will select

electric cell al]igment with the domain boundaries.
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A
ijk+1 A Eyij+12k51) Lk
Ex(i+1/2g+1,k+1)
. X A
f1j ke A y i+ L1 k1
Ey(i+1j+1/2k+1)
Ez(i,).k+1/2) HX({J+1/2,1(+ 1/2) Ez(ij+1,k§1/2)
A & A
HyGr125keD) | Hy(i+1/2,j+1k+1R)
Ez(i+1,jkH1/2) % V2D A poiing
>
/ Lk Hz(i+12+1/200) ij+lk
¥ Ex1210 x Ex(i+1/2j+1.K)
t+l,jk R
Ey(i+1j+1/2.4) Ltk

Figure 4.10. Yee Electric Cell and Associated Field Components.

A grid of (N by N by N) electric cells has (N)(NYN) E,, E,, and E, electric field

nodes, (N-1)(N-1)(N-2) H,, H,, and H, magnetic field nodes (Just the opposite would hold

for alligning magnetic cells with domain boundaries). 3-D electric and magnetic field

"update” equations can now be "converted” to electric and magnetic field grid “wpdate”
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equations by replacing the variables x,y,z and t with the grid coordinates of the electric

field spatial and temporal sampling points
x—=>iAlLi=0,1.N y—>jAL j=0,1.N z—>kAL k=0,1.N t—>nAt, n=0,1..N,

The notation can be simplified by omitting the common Al and At terms, and using
a superscript for the index of the temporal sampling point. The E field grid equations for

conductive media are obtained from equations (4.54, 4.57, 4.60)
_ 1 vo ZO 'A[ Gang(iaj> k)
2Vgrid g, 40(i, ], k)
Eni,j,k) = L EmY i, k) + 4.63
10 141 Y0 Zo - Al - O avgx(i,), K) 7.4 (4.63)
2 vgrid sr,avgx(i,j, k)

o Vo 1

Verid g, mex(1, ], k)
1 vo Zo-Al-Cag:li,j, k)
2Vgrid  €aex(X,Y,2)

1+
n-1 n-t n-t n-1
|:H,V 2(i,j,k"'%‘)“Hy Z(i:jak+%)+Hz 2(i,j+%,k)‘—Hz 2(i7j_%>k):|
_ 1 Vo Zo ‘Al'cavgy(iaj’k)

2Verid &g (i,),F)
EMNi ik~ SAVEY\ oS> n-17: : )
,V(I>ja ) 1 vo ZO Al cavgy(i,j, k)Ey (17]9 k) + (4 64)

1+
2vgn'd 8r,avgy(i,j ’ k)
. Vo 1
vgﬁda"ﬂvgy(iaj:k)

1 vo ZO'AI.G“VXJ’(i’jak)
2 Vgrid Sfﬂvﬂ(ixj:k)

1+

n—-l— n-l n—l n_l
I:HZ z(i_%7j=k)_Hz'2(i+%>j:k)+Hx 2(i3j3k+%)—H-" z(iaj:k—%):]
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1— 1 vo Zo 'AIGWOL]vk)
2Vegrid &, ayeili, ), K)
1 vo Zo -Al'Gang(i,j,k)
2Vgrid  g,05:(1, ], k)
o Vo 1
Verid g, g (1,1, k)
1 vo Zo- Al - Gavgz(i,j,k)
2Vegrid €, aye(i, ], K)

B3GR = Er ()0 +

1+

1+

n-l 1 nl -l
[Hx 2(i,j — 3,K) — Hx Y(,j+5.0)+Hy *(+3.5,0) - Hy z(i—%,j,k):|

The equations simplify greatly for the case of non-conductive media (6=0)

nre nelrs s v
ELGj R = X G/ R) + Zogs= LJ_ 5
r.avgx\*>J»

"3 n-3 n-1 el
[Hy 2oy k= )= Hy ok + ) +He "G+ 3, B~ H: 2(i,j~%,k)]
1
Y
ﬂ—'l n_! n__l "._l
I:Hz - LR~ H 2 (i+L,7,k) +H *(i.j.k+3) - Hx z(i,j,k—%)]

ENijs) = BTG k) + Zog
grid g ravgy

En~~kz,n—1-'k Vo 1
L L e P Y
n-1 n-1 i -t
[Hx 2(i>j_ %9 k) -Hx* (i)j+ %9 k) +Hy 2(1+ -;':ja k) _HY ? (1_ %7.]9]6)]
In the case of free-space (¢=1), the equations simplify further
EX0.j, ) ET @) B + Zogoo
nl n-l -l Varid nl
[:Hy ’ (i:jak_ %) -H}’ 2(iaj9k+ %) +H: 2(i7j+%9 k) -H:* (iaj— %7 k):!
.. e v
Ej 1., ~ B (1,8 + Zog—=x
1 el l el
[HZ 2(i=1.j,K)—H: *(i+3.j,0) +Hx *(i,j,k+37)— Hx 2(i,j,k—§)]
E2G.J, B~ ETMGJB) + Zog o

n—l n—l ”—-l— "_.l
[Hx z(i’j.... -;’7k)_Hx 2(i3j+';—7k) +Hy 2(f+%,j,k)—Hy 2(1-_ %:J’k)]
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(4.68)

(4.69)

(4.70)

(4.71)




Similarly, the H-field update grid equations are

HiG.), R = HE ) = Yoy oo (1,-,- 5 (4.72)
avgx\tsjs

el el nel pol
I:E}’ Z(i,j,k—';')—Ex 2(i>j:k+§1-)+Ez 2(i,j+'21',k)—Ez z(iaj_%:k)]

e nelys s v
oo k) = H G, R) = Yogitoomel (4.73)
PANEN 5

n_l n_l n—l n——l-
[Ez (= 2,/,0)—Ez *(i+5.,0) +Ex *(i,),k+3) ~Ex 2("’1”“5)J

1
n..sz:—E..k_ Vo 1 4.74
HZ(ISJ? ) (13.]7 ) Yovgﬁduavgz(i,j,k)x ( 7 )
ok n-i -l -l
[E, 2(i,j— 2, k) —Ex *(i,j+3,k) +Ey *(i+3./,6)—Ey 2(i-§,j,k)]

2. 3-D Grid Termination

The grid equations derived previously are valid for all the nodes except for the
nodes on the domain boundary. The reason is that the field nodes on the boundary have at

most five nearest neighbor nodes while the nodes within the domain boundaries have six

nearest-neighbor nodes.
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outside the boundary

/ B "inside" nodes
A - ——3>» E or HField
z inside the boundary
S ~-3 H or E Field
[ Figure 4.11. Nodes Inside and on a Boundary of a 3-D Grid.

’ The equations for the field components on the boundary can not be written
because the field component on the boundary shown in the figure above can not be
updated using the grid equations discussed so far. Extending the ideas of transparent grid
termination (TGT) the discrete boundary impulse response (DBIR) applied for 1-D and

2-D problems. Similarily to the 2-D TGT concept, the update equations on the boundary

can be devised based upon convolutions of the fields on the just inside boundary and the
pre-calculated impulse responses from the just inside boundary to the boundary. The

fields on the boundary will be expressed as a superposition of responses, as illustrated in
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the figure below for top plane of the boundary. The same applies to other piane of

boundary as well.

the node on the boundary has
- three field components(x,y,z)
(works as outputs in multiport model)

/0 ' > y P ——
! v
A |
'z " field components on the "jus: nside" boundary
Y ( works as inputs in multiport model)
y

Figure 4.12. Fields on the Boundary as a Superposition of Responses.

The superposition can be also modelled using the concept of a multiport. The
nodes on the grid boundary have three field components and those field components can
be considered as output ports of a linear multi-port. Assuming that the grid is a cubic with
(N)(N)N) nodes, the total number of output ports will be 3[2(N}N)+(N-2)4(N-1)]. The
field components on the nodes just inside the grid boundary will be considered as mput

ports of the linear multiport. There will be a total of 3[2(N-2)(N-2)+(N-4)4(N-3)] mput
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ports. The equivalent multiport model in 2-D TGT can be used in the same manner. The
input and output fields can be either electric or magntic fields. Furthermore, the input and
output fields need not be of the same "kind", that is the input fields could be, in principle,
E-fields and the output fields could be H-fields, or vice versa. However, we will select the
input and output fields to be of the same "kind", that is either all E or all H fields, such
that the impulse responses h_ (t) will be dimensionless. The equations will be derived for
E field model, that is vmth electric fields on the grid boundary. Dual equations for the
magnetic fields model can be obtained simply by replacing E's with H's. There are six
planes for the cubic grid boundary. However, by splitting the cubic into N pages and
making an arrangement for the input and output in the N pages, we can simplify the 3-D

TGT model as shown below.
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(N,LN) (N,N,N)
)
(N,1,N-1) N th page
T (N.NN-1)
(N-1)¢ page

(N,1,2) (N,N,2)

LD 2nd page | (NI} 4 (LNN)

Ist page
—e

(1,1,1 AN1)

Figure 4.13. Page Arrangement for 3-D Cubic Cell.

The boundary field components for the first page have the electric field E (ij,1,t),
E(ij,1,t) and E(ij,1,t). The boundary field components for the second page through
(N-1)th page have the electric field components like this. First, for the x components, the
2nd Page has [E(1,,2,t), E(1N,2,t), E(N,j,2,t), E(1,2,1)], nth (2<a<N-1) page has
[E(Ljnt), EGNnt), ENjnt), ELLnt)] and (N-1)th page has [E(1)N-11),
E (iN,N-1,t), E(N,j,N-L¢t), E (i,1,N-1t)]. For simplicity, the y,z components have theA

same global coordinates used in the x components. Finally, the boundary field components

on the Nth page have E (Lj,N,t), E(ij,N.t) and E (ij,N,t). The limits on the values of L}k

118




on the boundary are 1 and N. Now, the field components on the nodes just inside the
boundary exist in the second page through the (N-1)th page. The second page has
E,(ij,2,t), E(i,j,2,t) and E (i,j,2,t). For the x compoonents, the third page has [E (2,j,3,t),
E(iN-1,3,t), E(N-1,3,t), E(i23,t)], mth (3<m<N-2) page has [E(2jm;t),
E (iN-1,mt), E(N-1jmt), E(i2,m,t)]. The y,z components have the same global
coordinates. Finally,the (N-1)th page has E(ijN-1t), E(ijN-1,t) and E(ijN-1¢t).
However, the limits on the values of 1j,k on the nodes just inside the boundary are 2 and
N-1. Because the each node on the boundary has three field components, the electric field

vectors for the grid on the boundary can be formed as below
E:_ soundary(f) = [Ex 15t page Ex 2nd page - Ex_ N-1yh_page Ex Nen_page]l”  (4.75)
E,_boundary() = [Ey_1st_page Ey_nd_page - Ey_v-1yth_page Ey Nin_page]”  (4.76)
E:_soundary(D) = [Ez 1st_page Ez 2nd page - Ez_ (N-1yth_page £z Nih_page]”  (4.77)
where each page field element forms a row vector with the fields at the nodes on the
boundary and T indicates transposition (the vector is a columm vector, but it has been

written as a transpose of a row vector to save space). In an analogous manner an electric

field vector can be formed for the nodes just inside the grid boundary

Ex just_inside(D) = [Ex_2nd_page----s--- Ex (N-1yth_page] (4.78)
E} just_insiage(f) = [Ey_2na_page------Ey_(N-1yh_page] (4.79)
E; just_inside(1) = [Ez_2nd_page--+---- E. (N-1yh_page] (4.80)
Ejust_insiage(D) = [Ex_just_insiae(t) Ey just_insiae(f) E _jusr_inside(f)]T (4.81)

where each page field element forms a row vector with the fields at the nodes just imside

the boundary. The electric field on the grid boundary E,, . (t) can be expressed as a
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convolution of the electric fields at the layer just inside the grid boundary Ejust_insidc(t') and a

matrix of impulse responses H(t).

Ex_baunda)y(t) =H, (t) * ﬂﬂ_inside(t) (482)
E y_boundary(t) =H y(t) *F juﬂ_inside(t) (4 83)
Ez_boundary(t) =H; (t) * Ejust_imide(t) (4 84)

where the 2(N)(N)-(N-2)4(N-1) by 3[2(N-2)(N-2)+(N-4)4(N-3)] matrix of impulse

resposses can be wriiien as

U i has@® Bas®) . . . - . hap(® ]
hxz,l(t) e e e e e e e e .hsz(l‘)

HG=| . (4.85)
ha® o

where L=2-N2+(N-2)-4-(N-1) and M=3-[2-(N-2)2+(N-4)-4-(N-3)].

H(t) and H(t) have the same matrix size as H (t). The electric field(Ex, Ey, Ez) at
a boundary node (identified by a particular value of the index m) can be written as the

product of the m-th row of the impulse response matrix H(t) (H(t), H(t), H(t)) and the

column vector of the electric fields just inside the boundary (indentified by index n)
Ex_boundary(m s t) = Z::I;[ hx mn (t) * Ejusl_imide(n, t) = (4 86)
)y :j{ J.; Ejust_inside(1t, T) ~ hx ma(t —1)dt

E y_boundary(m> t) = Z::T! hy m,n(t) *E ﬁlst_irm‘de(n, f) = (487)

n=M !
Zn:l IO Ejust_inside(n, T) . hy mﬁ(t— T)Ch'
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Ez_baundary(m; t) = Znnjl h; m,n(t) *Ejusr_inside(n, t) = (4.88)
2:::,{ J.; E /just_inside (n, T) : hz m,n(t - T)d’r

The discretized forms of the above equations, involving samples of electric fields at t=kAt,
are the sums of discrete convolutions. Since a discrete convolution is itself a sum, the

result for the boundary nodes will involve double summation.

boundary(m) ZZTM Ep_k Ep mszde(n) hx mn (4'89)

E y_ boundmy(m) E ZP‘k E_]p;lsl m.rzde(n) hy mn (4°90)
K

E? pouniory) = L2y Z0% B iniae) -z (4.91)

The convolution equations express the fields at the edges as weighted sums (the
weighting coefficents are the values of the discrete boundary impulse responses h_ ) of the
time histories of the fields "just inside" the grid. In that respect the concept and
procedure used in 3-D TGT is the same as those used in 2-D TGT. Also, the impuise
responses h__(t) converge to zero relatively fast which effectively reduces the number of
significant terms in the convolution sums. The convolution sums can thus be truncated
such that only a certain number of the most recent vahes of the electric fields just inside
the boundary are needed. The discrete boundary impulse responses h__(kAt) need to be
determined (and saved) only once, just like in 1-D, 2-D, for a selected grid velocity
Vgi~AVAt. The impulse responses can be stored in a rectangular matrix form. A
particularly suitable matrix form would have [2(N}N)}H(N-2)4(N-1)] rows and
3[2(N-2)(N-2)+(N-4)4(N-3)]N, columns( because the field components at the nodes just

inside the boundary consist of Ex, Ey Ez and the number of each elctric field is
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2(N-2)(N-2)+(N-4)4(N-3)]) , where N, denotes the "truncated" length of the discrete
boundary impulse responses. This form is suitable because the boundary electric fields can
then be calculated as a product of such a matrix and a column vector constructed of
3[2(N-2)(N-2)+(N-4)4(N-3)] subvectors of length N,. The subvectors represent the N,
most recent values of the electric field at nodes just inside the boundary. The choice of N,
depends on the desired amplitude "resolution”. These subvectors are updated at each time
step by shifting all of their values down, that is, "futher into the past”, by one, discarding
the last value, and updating the first subvector element with the most recent field value
calculated via standard grid update equations. The double summations are thus efficiently
executed as matrix-vector multiplications.

In the 3-D TGT, the important thing is how to determine the discretized impulse
responses. The discretized impulse responses h.*_ are determined in a manner analogous
to the 1-D, 2-D cases, using the discrete equivalent of the Dirac delta function which we
will denote as 8*. In order to determine the discrete boundary impulse response for a
particular input port n, all input ports excep? the n-th input port are set to zero and the
Dirac impulse is applied to the n-th mput port. Recording all the outputs from t=0 to

t=N,At provides us with 2(N)(N)+(N-2)4(N-1) discrete boundary impulses of duration N,.

Ef _just_inside(n) =&* 4.92)
E} st msiae®) =0 for p=1.2(N-2)? +(N-4H4(N-3) and p=n  (4.93)

Ef _just_inside(p) =0, Ej _just_inside(p) =0 for pP= 12(N - 2)2 + (N - 4)4(N - 3) (4-94)
The h*_ and h*, are determined in the same manner as the %,

E§ _jﬂst_inside(n) = 8k (4.95)
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EY it msiae®) =0 for p=1.2(N-2)*+(N-4H4(N-3) and p#n (4.96)
Ef_just_ins:’de(p) = O:Ef_jusr_inside(p) =0 for pP= 12(N~ 2)2 + (N_ 4)4(N— 3) (497)

E : _just_inside (n) = Sk (4 98)

E* @P)=0 for p=1.2(N-2)>+(N-4)4(N-3) and p=n (4.99)

z_just_inside
Ef_iusr_inside(p) = O:E;_just_inside(p) =0 fO" p= 12(N” 2)2 + (N—' 4)4(N— 3)
(4.100)
The each process is repeated 2(N-2)(N-2)+(N-4)4(N-3) times and the results for

the each case are stored in the 2(N)(N)+H(N-2)4(N-1) by 3[2(N-2)(N-2)+(N-4)4(N-3)IN, (
[E, E, E,] field vector just inside the boundary) matrix. This matrix is then used to
implement the transparent grid termination via the matrix multiplication by the
3[2(N-2)(N-2)+(N-4)4(N-3)IN, column vector of the time-histories of the fields just inside
the boundary. Depending on the values of N, and N, there will be input nodes that are
sufficiently far from an output node such that the time it takes for an input impulse to

propagate to the ouput port exceeds N,. In such a case, the contribution of such an input

- node to the output node is known to be zero in advance. This may be used to reduce the

number of operations in TGT impiementation. The process of obtaining the 3-D discrete
boundary impulse responses is carried out on a "large" grid whose size should be at least
(N+N, by N+N, by N+N,), or equivalently, the distance from the TGT boundary to the
boundary of the"large" grid should be at least N,Al/2. The termination of this "larger" grid
(in typical applications N>>N, and the "larger" grid would be only incrementaly larger) is
immaterial, since the reflections off its boundary do not arrive at the output nodes (where

they would have corrupted the impulse responses) before the time-stepping has been
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terminated. When calculating the discrete boundary impulse responses (DBIR), the nodes
mterior to the TGT boundary need not be updated since all the nodes on the layer just
inside the TGT boundary (the input ports) are zero for t>0 (at t=0 only one node on the
layer just inside the TGT boundary has the value of 1). The DBIR calculations thus
require updates only for the nodes between the TGT boundary and the large grid boundary
which can result in sigpificant computational time savings if N>>N,. The update
equations used for the region between the "innef" (TGT) and the outer boundaries are the
free space equations, since this region is assumed to be free space. (The medium between
the two boundaries can be any homogenous medium extending to infinity, but the most

practical case is the free space.)

C. 3-D TGT RESULTS

The overall procedure for 3-D TGT testing is very similar to that used for 2-D
TGT testing. The main difference is in the amount of computer memory needed for 3-D
TGT and "infinite" grid implementation. Since 3-D FD-TD calculations require much
more computer memory because the number of nodes in 3-D is proportional to N* as
opposed to N* for 2-D (N is the number of cells on each side of the computationai
domain) this limits the grid size and the duration of impulse responses. We have thus
selected a domain with only N=11 electric cells on each side (electric cell faces are aligned
with the domain boundaries). Note that even such a modest number of cells pér each side

results in N®=1331 electric cells for the domain vohmme. Since each cell has three field
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components, the total number of electric field components is 3N°=3993. The number of
magnetic field components is about 3(N-1)>=3000. The total number of unknowns is thus
about 7000. 3-D TGT is implemented by updating the electric field components on the
TGT boundary based on the time histories of electric field components at nodes just inside
the TGT boundary. The source is a delta impulse of electric field E field at the center of
the grid, with unit-amplitude components E,, E, and E,. The source creates an outgoing
spherical wave. If the grid and the TGT were perfect the power within the TGT will be
constant until the outgoing wave has reached the nodes in the centers of the six TGT
boundary planes (because these nodes are the closest to the source located at the grid
center. From then on the power within the TGT should decrease until the outgoing wave
has reached the comers of the domain (the nodes furthest away from the source at the
domain center). Afier this time the power within the grid, for a perfect grid and TGT,
should be zero. However, since the grid is nor perfect, there will be some residual power
within the TGT boundary even for an infinite grid. This is the result of the impulse
"spreading” as it propagates through the FD-TD grid. Furthermore, the residual power
will include the power "reflected” off an imperfect TGT. Again, just like in 2-D, the
residual power can be calculated as a function of time for the two cases infinite grid and
TGT. The relative difference of the two expressed in dB can be thought of as a measure
of performance of the TGT. This quantity can be plotted vs. time (with the time origin
defined as the time when the outgoing wave first reaches the TGT) for various impulse

response durations. Unfortunately the results for 3-D TGT were not satisfactory. The
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TGT tests showed "late-time instability", that is the power within the grid would at first

decrease (as it should) but later will start to increase without bounds, which is incorrect.

A sample result is shown below (what is the duration of the impulse response for this?)

o
()
¥

Magnitude

100 200

300 400 500
fime step

Figure 4.14. Residual Power Within TGT Showing Late-lime Instability.

The non-physical oscillatory behaviour of the solution is also evident from the plot
of the electric field at a node inside the TGT. The field at first converges to zero as it

should, but after about 200 steps it starts to diverge in an oscillatory manner.
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Figure 4.15. Field Strength at a Node observation point within boundary.

For an infinite boundary, the residual power within the TGT boundary decreases to
zero as it should. The late-time instability could not be observed because the available

PC's did not have enough memory to accomodate the size of the required "infinite" grid.
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Figure 4.16. Residual Power within TGT for an Infinite Boundary.
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V. SUMMARY AND CONCLUSION

A. SUMMARY

In this thesis we have tested the performance of the TGT in 1-D, 2-D and 3-D,
based on the residual reflection off the TGT boundary. The power within the TGT
bouﬁdary was calculated at each time step for an "infinite" grid (that is a grid so large that
the reflection off its boundary do not reach the nodes within the TGT boundary before the
calculations are completed) and for a much smaller grid with the TGT. For 1-D there were
no reflections off the TGT boundary, that is, the outgoing wave was "absorbed” perfectly
by the TGT. Note that in 1-D there is no impulse spreading. Therefore, in 1-D, the grid
and the TGT can be "perfect”. This is not the case in 2-D however. Neither the grid nor
the TGT can be perfect, that is there is some pulse spreading and some "reflection” off the
TGT. However, the power reflected off the TGT is less than 1% of the residual power
due to pulse spreading. Therefore, although the 2-D TGT is not perfect, its performance
is excellent since the reflections off the TGT are well below the level of the "distortion"
introduced by the grid itself Furthermore, the power reflected off the TGT boundary
depends on the duration of the truncated impulse responses: truncating impulse responses
at a later time (increasing the impulse response duration) reduces the reflections off the
TGT. Finally, the 3-D TGT implementation was not successful, because of late-time
instability problems.

B. CONCLUSIONS AND RECOMMENDATIONS

The results of this study show that TGT concept works for 1-D and 2-D FD-TD
electromagnetic field problems. The 3-D TGT implementation was the most difficult,
because of the computer memory requirement. Unfortunately, it was not successful due to

late-time instabilities. More research is needed to determine and remove the causes of
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late-time instabilities in 3-D. A previously completed thesis [Wells] has demonstrated the
effectiveness of TGT for 2-D static problems, while this thesis has demonstrated the TGT
effectiveness for 2-D time-domain problems. Another possibility for further research is to
implement the TGT in the frequency domain, where the time domain convolutions would

be replaced by sums of products of complex numbers.

130




APPENDIX

A. DBIR.M

%%%%% This Program Generates TGT Coefficients for 2-D %%%%%

$%%%% TMz fields (Ez, Hx, Hy) %%%%%

All H-fields have been multiplied by 20
%

clear all
clear, flops(0);

tic
N = 101;
Nin = 21;
Nout = Nin + 2;
h_dur = 40; % duration of impulse responses

grid "speed"
Row "shift" for the "inside" matrix

o

vr = 1/sqrt(2);
rowsh = 0.3* (N - Nin);
colsh = 0.5*(N - Nin};

AN A°

irt = rowsh + 1; % Top row for the "inside" matrix

irb = irt + Nin - 1; % Bottom row for the "inside" matrix

icl = colsh + 1; % Leftmost column for the "inside" matrix
icr = icl + Nin - 1; % Rightmost column for the "inside" matrix
nodes_out = 4* (Nin+1); % Number of nodes on the boundary
nodes_in = 4*(Nin-1); % Number of nodes just inside the boundary

%%%%% INITIALIZE ARRAYS %%%%%%
z = zeros(N,N); Hx = zeros(N-2,N-1); Hy = zeros(N-1,N-2);

Column "shift"™ for the "inside" matrix

Edbir = zeros(nodes_out,h_dur); Dbir = zeros(nodes_out,nodes_in*h_dur);

row_pointer = zeros{l,nodes_in); col_pointer = zeros(l,nodes_in);

col_start = zeros(l,nodes_in); col_stop = zeros(l,nodes_in);
for m = l:1l:nodes_in % LOOP OVER INNER GRID NODES
if (m <= Nin)
row_pointer(m) = irt; col_pointer(m) = icl + m - 1;
elseif (m > Nin) & (m <= 2*Nin-1)
row_pointer(m) = irt + m - Nin; col pointer(m} = icr;
elseif (m > 2*Nin-1) & (m <= 3*Nin-2)
row_pointer(m) = irb; col_pointer(m) = icr - (m-(2*Nin-1));
elseif (m > 3*Nin-2)
row_pointer(m) = irb - (m-(3*Nin-2)); col_pointer(m) = icl;
end
col_start(m) = (m-1)*h_dur+l; col_stop(m) = col start(m) + h_dur
end
pack

% LOOP OVER INNER GRID NODES as sources
for m = 1:1:nodes_in
Ez = zeros(N,N); Hx = zeros(N-2,N-1); Hy = zeros(N-1,N-2};
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Ez (row_pointer(m),col_pointer{(m)) = 1; % Delta pulse excitation along the. top
half of the boundary

%¥%%%%% TIME LOOP %%%%%%
for k = 1:1:h dur

Etop = (Ez(irt-1,icl-l:icr+l))';
Eright = Ez{irt:irb+l,icr+l);

Ebot = (fliplr(Ez(irb+l,icl-1l:icx)))’';
Eleft = flipud(Ez(irt:irb,icl-1));

Edbir(:,k) = [Etop; Eright; Ebot; Eleft];
Hx = Hx + vr*{ Ez(2:N-1,1:N-1) - Ez(2:N-1,2:N});
Hy = Hy + vr*(-Ez(1:N-1,2:N-1) + Ez(2:N,2:N-1));

Ez (2:N-1,2:N-1)=Ez(2:N-1,2:N-1) +vr*(-Hy(1:N-2,:) +Hy (2:N-1,:)
+Hx{:,1:N-2)-Hx(:,2:N-1));

Ez(irt:irb,icl:icr) = zeros(Nin,Nin); % Reset Ez inside
end
%%%%%% ENI» OF TIME LOOP %%%%%%
Dbir(:, col_start(m):col_stop(m)) = Edbir;
end

%$%%%%% END OF SOURCE LOOP %%%%%%
MFlops = flops/1000000
toc
save dbir_40m Dbir
save par_40m Nin h dur vr

B. TGT_TM.M

%
$%%%%% Program : TGT_TM.M T¥¥%¥%
%%%%%% FD-TD for 2D, TMz fields (Ez, Hx, Hy), cartesian cordinates %%%%%%
%%%%%% NOTE: H-fields have been multiplied by 20 ! %%5%%%
%%%%%% Dirichlet b.c. or OPEN boundary simulated via DBIR TEETE%

load dbir_40m
load par_40m

%%%%% INPUT PARAMETERS %%%%%

N = Nin + 2;
nodes_out = 4*(Nin+l); % Number of nodes on the boundary
nodes_in = 4*(Nin-1); % Number of nodes just inside the boundary

% Time Samples
N_samples = 200;

%%%%% ARRAYS INITIALIZED %%%%%

Ez = zeros(N); Hx = zeros(N-2,N-1); Hy = zeros(N-1,N-2);
Ebound = zeros(nodes_in*h dur,1); E_dbir = zeros(nodes_out,1);
time_pointer = zeros(nodes_in,1);

%%%%% BOUNDARY POINTERS FOR THE TIME HISTORIES OF NODES JUST INSIDE %%%%%

for i = l:nodes_in, time_pointer(i) = (i-1)*h_dur + 1; end

o0

%%%%% BOUNDARY POINTERS FOR SPIRAL TO RASTER LABELING CONVERSION %%%%
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for

¥%5%%% (can be done only once and stored!!!) ¥E%%%

for n = 1:1:nodes_out

if n <= N
row_pointer(n) = 1; col pointer(n) = n;
elseif (n > N) & (n <= 2*N-1)
row_pointer{(n) =n - N + 1; col_pointer(n) = N;
elseif (n > 2*N-1) & (n <= 3*N-2)
row_pointer(n) = N; col_pointer(n) = 3*N - 1 - n;
elseif (n > 3*N-2)
row_pointer(n) = 4*N - 2 - n; col_pointer(n) = 1i;
end

end

k=1:1:N_samples

%%%%% FIELD UPDATES %%%%%

Hx = Hx + vr*( Ez(2:N-1,1:N-1) - Ez(2:N-1,2:N));
Hy = Hy + vr*(-Ez(1:N-1,2:N-1) + Ez(2:N,2:N-1));

Ez{(2:N-1,2:N-1) = Ez(2:N-1,2:N-1)} +
vr* (-Hy(L:N-2, :)+Hy(2:N-1,:)+Hx(z,21:N-2) -Hx(:,2:N-1));

%%%%%% nodes "just inside", spiral labeling ¥%¥%%%%

Eupdate = [(Ez(2,2:Nin+1))';Ez(3:Nin+1,Nin+1); (fliplr(Ez (Nin+1,2:Nin}))"
;£lipud(Ez(3:Nin,2))];

%$%%%%% FIFO REGISTER-LIKE STORING OF TIME HISTORIES %%%%%%

Ebound(2:nodes_in*h dur)
Ebound(time_pointer)

Ebound(1:nodes_in*h_dur-1);
Eupdate;

%%%%% CONVOLUTIONS FOR THE BOUNDARY NODES, MATRIX VERSION %%%%%
E_dbir = Dbir*Ebound

%%%%% CONVERSION FROM SPIRAL, BACK TO RASTER LABELING %¥%%%%

for n = 1:1:nodes_out

Ez (row_pointer(n),col_pointer(n)) = E_dbir(n):;
end

Ez (ceil (N/2),ceil (N/2)) = 0;

%$%%% Computation of Residual Power for grid 5%5%%
%%% since wavefront touching the tgt boumdary %%%%

o

if (k>=ceil (N/2) & k<=ceil (N/2)+140)

m=m+1;




s (m)=0;
for a=1:N
for b=1:N
s{m)=s(m)+Ez(a,b) "2;
end
end

end

end

save s_tgt s
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